Skip to main content
Log in

Electromagnetic Viscous-Resistive-Drift-Wave Instability in Burning Plasma

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Drift wave instabilities (DWI) might be take a part for anomalous transport in modern day tokamaks due to contributions of edge turbulence and zonal flows. Experimentally, it is found that micro-level turbulence (associated with two-fluid dynamics) braced with macro-level (associated with single-fluid dynamics) magnetohydrodynamics-type processes. In this paper, additional two-fluid effect viz. ion viscosity on the electromagnetic (EM) linear resistive drift wave instability is analyzed by using a two-fluid MHD model. A modify dispersion relation for EM drift modes in a nonuniform magnetized plasma is derived, taken into account equilibrium pressure gradients, effect of finite ion-sound gyro-radius associated with electron–ion decoupling and viscous effect due to ions. The dispersion relation is then analyzed both analytically as well as numerically. It is shown, how additional two-fluid effects modify the growth rate for DWI in different regimes. The standard resistive drift-Alfven mode is reproduced in the cold ion case. Moreover, it is estimated that these effects provide the possibility of novel effects on EM instabilities in a nonuniform magnetized plasma. The results should be useful in the interpretation of EM fluctuations in nonuniform magneto-plasmas in which resistivity is a key element in calculations of dissipative drift instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.S. Moiseev, R.Z. Sagdeev, J. Nucl. Eng. 6, 6 (1964)

    Google Scholar 

  2. A. Fruchtman, H.R. Strauss, Phys. Fluids B 4, 1397 (1992)

    Article  ADS  Google Scholar 

  3. A.B. Mikhailovskii, Electromagnetic Instabilities in an Inhomogeneous Plasma (Institute of Physics Publishing, Bristol, 1992)

    Google Scholar 

  4. A.M. Mirza, G. Murtaza, P.K. Shukla, Phys. Plasmas 3, 731 (1996)

    Article  ADS  Google Scholar 

  5. P.C. Liewer, Nucl. Fusion 27, 611 (1985)

    Google Scholar 

  6. W. Horton, Phys. Rep. 192, 1 (1990)

    Article  ADS  Google Scholar 

  7. J.E. Kinsey, G. Bateman, T. Onjun, A.H. Kritz, A. Pankin, G.M. Staebler, R.E. Waltz, Nucl. Fusion 43, 1845 (2003)

    Article  ADS  Google Scholar 

  8. J.E. Kinsey, G.M. Steabler, R.E. Waltz, Phys. Plasma 9, 1676 (2002)

    Article  ADS  Google Scholar 

  9. P.N. Deka, A. Borgohain, Phys. Plasma 18, 042311 (2011)

    Article  ADS  Google Scholar 

  10. A.A. Galeev, S.S. Moiseev, R.Z. Sagdeev, J. Nucl. Energy Part C 6, 645 (1964)

    Article  ADS  Google Scholar 

  11. B. Scott, Plasma Phys. Control. Fusion 39, 1635 (1997)

    Article  ADS  Google Scholar 

  12. W. Lee, J.R. Angus, M.V. Umansky, S.I. Krasheninnikov, J. Nucl. Mater. 463, 765 (2015)

    Article  ADS  Google Scholar 

  13. W. Lee, M.V. Umansky, J.R. Angus, S.I. Krasheninnikov, Phys. Plasmas 22, 012505 (2015)

    Article  ADS  Google Scholar 

  14. W. Lee, J.R. Angus, S.I. Krasheninnikov, Phys. Plasmas 22, 072113 (2015)

    Article  ADS  Google Scholar 

  15. C. Theiler, I. Furno, P. Ricci, A. Fasoli, B. Labit, S.H. Muller, G. Plyushev, Phys. Rev. Lett. 103, 065001 (2009)

    Article  ADS  Google Scholar 

  16. T. Happel, F. Greiner, N. Mahdizadeh, B. Nold, M. Ramisch, U. Stroth, Phys. Rev. Lett. 102, 255001 (2009)

    Article  ADS  Google Scholar 

  17. S.H. Muller, C. Theiler, A. Fasoli, I. Furno, B. Labit, G.R. Tynan, M. Xu, Z. Yan, J.H. Yu, Plasma Phys. Control. Fusion 51, 055020 (2009)

    Article  ADS  Google Scholar 

  18. I. Furno, M. Spolaore, C. Theiler, V. Vianello, R. Cavazzana, A. Fasoli, Phys. Rev. Lett. 106, 245001 (2011)

    Article  ADS  Google Scholar 

  19. S. Krasheninnikov, D. D’Ippolito, J. Myra, J. Plasma Phys. 74, 679 (2008)

    Article  ADS  Google Scholar 

  20. M. Kocan, F.P. Gennrich, A. Kendl, H.W. Muller, ASDEX Upgrade Team, Plasma Phys. Control. Fusion 54, 085009 (2012)

    Article  ADS  Google Scholar 

  21. P. Manz, D. Carralero, G.H. Birkenmeier, W. Müller, S.H. Müller, G. Fuchert, B.D. Scott, U. Stroth, Phys. Plasmas 20, 102307 (2013)

    Article  ADS  Google Scholar 

  22. D.A. D’Ippolito, J.R. Myra, S.J. Zweben, Phys. Plasmas 18, 060501 (2011)

    Article  ADS  Google Scholar 

  23. D. Jovanovic, P.K. Shukla, F. Pegorano, Phys. Plasmas 15, 112305 (2008)

    Article  ADS  Google Scholar 

  24. N. Bisai, R. Singh, P.K. Kaw, Phys. Plasmas 19, 052509 (2012)

    Article  ADS  Google Scholar 

  25. N. Bisai, P.K. Kaw, Phys. Plasmas 20, 042509 (2013)

    Article  ADS  Google Scholar 

  26. V.V. Mirnov, C.C. Hegna, S.C. Prager, Phys. Plasmas 11, 4468 (2004)

    Article  ADS  Google Scholar 

  27. V.V. Mirnov, J.P. Sauppe, C.C. Hegna, C.R. Sovinec, Plasma Phys. Rep. 42, 5 (2016)

    Article  Google Scholar 

  28. ChP Ritz, E.J. Powers, R.D. Bengston, Phys. Fluids B 1, 153 (1989)

    Article  ADS  Google Scholar 

  29. T.L. Rhodes, ChP Ritz, R.D. Bengston, Nucl. Fusion 33, 1147 (1993)

    Article  ADS  Google Scholar 

  30. M. Endler, H. Niedermeyer, L. Giannone, E. Kolzhauer, A. Rudyj, G. Theimer, N. Tsois, Nucl. Fusion 35, 1307 (1995)

    Article  ADS  Google Scholar 

  31. J. Weiland, Collective Modes in Inhomogeneous Plasma (IOP, Bristol, 2000)

    Google Scholar 

  32. F.L. Hinton, C.W. Horton Jr., Phys. Fluid 14, 116 (1971)

    Article  ADS  Google Scholar 

  33. S. Yang, P. Zhu, J. Xie, W. Liu, Phys. Plasmas 25, 092113 (2018)

    Article  ADS  Google Scholar 

  34. R.J. Goldstone, P.H. Rutherford, Introduction to Plasma Physics (Taylor and Francis Inc., New York, 1995)

    Book  Google Scholar 

  35. S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  36. P.N. Deka, J.K. Deka, J. Fusion Energ. 37, 301 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Chinese Scholarship Council to support him in category of 2015 CSC awardee (Serial No. 2015GXZQ06). The author would like to thank the anonymous referee for such constructive suggestions for improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umer Rehman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The linearized Eq. (2) with respect to first order perturbation proportional to \(\exp \left[{- \iota \left({\omega t + ky} \right)} \right]\) is,

$$- \iota \omega \rho_{0} U = - \nabla \left({p + \frac{{B_{0} B_{1}}}{4\pi}} \right) - \nabla \cdot {\varPi}_{i} + \frac{1}{4\pi}\left({\left({B_{0} \cdot \nabla} \right)B_{1} + \left({B_{1} \cdot \nabla} \right)B_{0}} \right),$$
(11)

the linearized continuity Eq. (3) read as,

$$- \iota \omega N + N_{0} \nabla \cdot U + U_{x1} \frac{{dN_{0}}}{dx} = 0.$$
(12)

Resolving Eq. (11) into components, the x-component yields,

$$- i\omega \rho_{\left(0 \right)} U_{x1} = - \frac{\partial}{\partial x}\left({p + \frac{{B_{z\left(0 \right)} B_{z} 1 + B_{y\left(0 \right)} B_{y} 1}}{4\pi}} \right) + i\frac{{kB_{y\left(0 \right)}}}{4\pi}B_{x1} - \left({\nabla \cdot {\varPi}_{i}} \right)_{x},$$
(13)

the y-component gives,

$$- i\omega \rho_{\left(0 \right)} U_{y1} = - ik\left({p + \frac{{B_{z\left(0 \right)} B_{z1}}}{4\pi}} \right) + \frac{1}{4\pi}\frac{{\partial B_{y\left(0 \right)}}}{\partial x}B_{x1} - \left({\nabla.{\varPi}_{i}} \right)_{y},$$
(14)

and the z-component expresses as,

$$- i\omega \rho_{\left(0 \right)} U_{z1} = i\frac{{kB_{y\left(0 \right)}}}{4\pi}B_{z1} + \frac{1}{4\pi}\frac{{\partial B_{z\left(0 \right)}}}{\partial x}B_{x1}.$$
(15)

Substituting perturbation \(p + B_{z\left(0 \right)} B_{z}/4\pi\) from Eq. (14) along with Eq. (12) into Eq. (13) leads to the vorticity Eq. (6). The last term in Eq. (6) is originated from components of stress tensor given by Braginskii [35].

$$\left({\nabla \cdot {\varPi}_{i}} \right)_{x} = \frac{\partial}{\partial x}{\varPi}_{ixx} + \frac{\partial}{\partial y}{\varPi}_{ixy},$$
(16)

And,

$$\left({\nabla.{\varPi}_{i}} \right)_{y} = \frac{\partial}{\partial x}{\varPi}_{iyx} + \frac{\partial}{\partial y}{\varPi}_{iyy},$$
(17)

where the gyro-viscous components are \({\varPi}_{ixy} = {\varPi}_{iyx} = nT/2\omega_{ci} \left({\partial v_{x}/\partial x - \partial v_{y}/\partial y} \right)\) and \({\varPi}_{iyy} = - {\varPi}_{ixx} = nT/2\omega_{ci} \left({\partial v_{y}/\partial x + \partial v_{x}/\partial y} \right)\) as described in Ref. [31]. Neglecting convective derivative in linear studies the opportunity of gyro-viscous cancelation is subsided.

Appendix 2

The linearized GOL Eq. (5) and putting in linearized Faraday’s induction law Eq. (4), yields,

$$\frac{{\partial B_{1}}}{\partial t} = - \nabla \left({- U_{1} \times B_{0} + \frac{1}{{N_{0} e}}\left({j_{1} \times B_{0} + j_{0} \times B_{1} - \nabla p_{e}} \right) + \eta j_{1}} \right).$$
(18)

From first order perturbation proportional to \(\exp \left[{- \iota \left({\omega t + ky} \right)} \right]\), above equation gives,

$$- \iota \omega B_{1} = - B_{0} \left({\nabla \cdot U_{1}} \right) + ikB_{y\left(0 \right)} U_{1} + \frac{c\eta}{4\pi}\nabla^{2} B_{1} + \frac{1}{{N_{0} e}}\left({- \iota kB_{y\left(0 \right)} j_{1} + j_{x1} \frac{{dB_{0}}}{dx} + ikj_{y\left(0 \right)} B_{1}} \right) + \frac{1}{{N_{0} e}}\left({j_{x1} B_{0} + B_{x1} j_{0} - ikp_{e} \hat{z}} \right).$$
(19)

The components of Ampere’s law with conditions \(\nabla \cdot j = 0\) and \(\nabla \cdot B = 0\) gives,

$$\frac{4\pi}{c}j_{x1} = ikB_{z1},\quad \frac{4\pi}{c}j_{y1} = - \frac{\partial}{\partial x}B_{z1} \quad {\text{and}}\quad \frac{4\pi}{c}j_{z1} = - \frac{1}{\iota k}\nabla^{2} B_{x1}.$$
(20)

Using these expressions, x-component of induction Eq. (19), yields Eq. (7) and z-component of induction Eq. (19), gives

$$- i\omega B_{Z1} + B_{Z\left(0 \right)} \nabla.U - ikB_{y\left(0 \right)} U_{z1} + U_{x1} \frac{{dB_{z\left(0 \right)}}}{dx} + \frac{c}{{4\pi eN_{\left(0 \right)}}}\left({B_{x1} \frac{{d^{2} B_{y\left(0 \right)}}}{{dx^{2}}} - B_{y\left(0 \right)} \nabla^{2} B_{x1}} \right) - \frac{{c^{2} \eta}}{4\pi}\nabla^{2} B_{z1} - \frac{c}{{eN_{\left(0 \right)}^{2}}}\frac{{dN_{\left(0 \right)}}}{dx}\left({\frac{1}{c}j \times B_{\left(0 \right)} + \frac{1}{c}j_{\left(0 \right)} \times B - \nabla p} \right)_{y} = 0,$$
(21)

Neglect last term of Eq. (21) by putting its value zero to eliminate fast-magneto-acoustic (FMA) mode which is not mode of interest for present study and inserting the value of \(U_{z1}\) from Eq. (15) yields Eq. (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, U. Electromagnetic Viscous-Resistive-Drift-Wave Instability in Burning Plasma. J Fusion Energ 38, 531–538 (2019). https://doi.org/10.1007/s10894-019-00219-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-019-00219-3

Keywords

Navigation