Skip to main content
Log in

Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this research, the thermoelastic response of unidirectional carbon fiber (CF)-reinforced polymer hybrid composites containing carbon nanotubes (CNTs) are analyzed using a physics-based hierarchical micromechanical modeling approach. The developed model consists of a unit cell-based scheme along with the Eshelby method which can consider random orientation, random distribution, directional behavior, non-straight shape of CNTs and interphase region generated due to the non-bonded van der Waals interaction between a CNT and the polymer matrix. The predictions are compared with the experimental data available in the literature and a quite good agreement is pointed out for the fibrous polymer composite, CNT-polymer nanocomposite and fiber/CNT-polymer hybrid composite systems. The influences of several factors, including volume fraction, aspect ratio, off-axis angle and arrangement type of CFs as well as CNT volume fraction on the thermoelastic behavior of CF/CNT-polymer hybrid composites are examined in detail. The results indicate that the transverse CTE of a unidirectional CF-reinforced composite is significantly improved due to the addition of CNTs, while the hybrid composite CTE in the longitudinal direction is negligibly affected by the CNTs. Also, it is found that the role of CNT in the hybrid composite thermoelastic behavior becomes more prominent as the CF aspect ratio decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aghdam, M.M., Dezhsetan, A.: Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos. Struct. 71(3–4), 327–332 (2005)

    Article  Google Scholar 

  • Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015a)

    Article  Google Scholar 

  • Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015b)

    Article  Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)

    Article  Google Scholar 

  • Baxter, S.C., Robinson, C.T.: Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71(10), 1273–1279 (2011)

    Article  Google Scholar 

  • Bednarcyk, B.A., Arnold, S.M.: Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding. Int. J. Solids Struct. 39(7), 1987–2017 (2002)

    Article  MATH  Google Scholar 

  • Chouchaoui, C.S., Benzeggagh, M.L.: The effect of interphase on the elastic behavior of a glass/epoxy bundle. Compos. Sci. Technol. 57(6), 617–622 (1997)

    Article  Google Scholar 

  • Craft, W.J., Christensen, R.M.: Coefficient of thermal expansion for composites with randomly oriented fibers. J. Compos. Mater. 15(1), 2–20 (1981)

    Article  Google Scholar 

  • Dastgerdi, J.N., Marquis, G., Salimi, M.: The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos. Sci. Technol. 86, 164–169 (2013)

    Article  Google Scholar 

  • Dong, C.: Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites. Int. J. Smart Nano Mater. 5(1), 44–58 (2014)

    Article  Google Scholar 

  • Feng, C., Jiang, L.: Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)-polymer nanocomposites. Compos. A Appl. Sci. Manuf. 47, 143–149 (2013)

    Article  Google Scholar 

  • Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63(11), 1689–1703 (2003)

    Article  Google Scholar 

  • Goldberg, R.K., Arnold, S.M.: A study of influencing factors on the tensile response of a titanium matrix composite with weak interfacial bonding. NASA/TM—2000-209798 (2000)

  • Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J.: Micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites. Mater. Sci. Eng. B 229, 173–183 (2018)

    Article  Google Scholar 

  • Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Ansari, R.: Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes. Mech. Mater. 118, 31–43 (2018a)

    Article  Google Scholar 

  • Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018b)

    Article  Google Scholar 

  • Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14, 263–275 (2018c)

    Article  Google Scholar 

  • Hine, P.J., Lusti, H.R., Gusev, A.A.: Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol. 62(10–11), 1445–1453 (2002)

    Article  Google Scholar 

  • Honjo, K.: Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating. Carbon 45(4), 865–872 (2007)

    Article  Google Scholar 

  • Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., Liu, Y., Ning, H., Wu, L., Li, J., Yuan, W., Watanabe, T., Yan, C., Zhang, Y.: Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Res. Lett. 8(1), 15 (2013)

    Article  Google Scholar 

  • Jasiuk, I., Kouider, M.W.: The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic composites. Mech. Mater. 15(1), 53–63 (1993)

    Article  Google Scholar 

  • Jia, Y., Chen, Z., Yan, W.: A numerical study on carbon nanotube-hybridized carbon fibre pullout. Compos. Sci. Technol. 91, 38–44 (2014)

    Article  Google Scholar 

  • Kaleemullah, M., Khan, S.U., Kim, J.K.: Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos. Sci. Technol. 72(16), 1968–1976 (2012)

    Article  Google Scholar 

  • Karadeniz, Z.H., Kumlutas, D.: A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78(1), 1–10 (2007)

    Article  Google Scholar 

  • Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)

    Article  Google Scholar 

  • Kim, M.T., Rhee, K.Y., Lee, J.H., Hui, D., Lau, A.K.: Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos. B Eng. 42(5), 1257–1261 (2011)

    Article  Google Scholar 

  • Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D., Abot, J.L.: Elastic response of a carbon nanotube fiber reinforced polymeric composite: a numerical and experimental study. Compos. B Eng. 41(5), 414–421 (2010)

    Article  Google Scholar 

  • Kundalwal, S.I., Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–131 (2016)

    Article  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech. 226(6), 2035–2052 (2015a)

    Article  MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–253 (2015b)

    Article  MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech. A/Solids 64, 69–84 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012a)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A/Solids 36, 191–203 (2012b)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. B Eng. 57, 199–209 (2014)

    Article  Google Scholar 

  • Li, C., Chou, T.W.: Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos. Sci. Technol. 66(14), 2409–2414 (2006)

    Article  Google Scholar 

  • Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)

    Article  Google Scholar 

  • Lurie, S.A., Volkov-Bogorodskiy, D.B., Menshykov, O., Solyaev, Y.O., Aifantis, E.C.: Modeling the effective mechanical properties of “fuzzy fiber” composites across scales length. Compos. B Eng. 142, 24–35 (2018)

    Article  Google Scholar 

  • Ma, X., Scarpa, F., Peng, H.X., Allegri, G., Yuan, J., Ciobanu, R.: Design of a hybrid carbon fibre/carbon nanotube composite for enhanced lightning strike resistance. Aerosp. Sci. Technol. 47, 367–377 (2015)

    Article  Google Scholar 

  • Mahmoodi, M.J., Aghdam, M.M.: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—a micromechanical approach. Mater. Sci. Eng. A 528(27), 7983–7990 (2011)

    Article  Google Scholar 

  • Mahmoodi, M.J., Vakilifard, M.: A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites. Mater. Des. 122, 347–365 (2017)

    Article  Google Scholar 

  • Mathur, R.B., Chatterjee, S., Singh, B.P.: Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68(7), 1608–1615 (2008)

    Article  Google Scholar 

  • Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L.T., Ikegami, K.: Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon 44(10), 2002–2008 (2006)

    Article  Google Scholar 

  • Pal, G., Kumar, S.: Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Mater. Des. 89, 129–136 (2016)

    Article  Google Scholar 

  • Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)

    Article  Google Scholar 

  • Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, New Jersey (2006)

    Book  Google Scholar 

  • Rafiee, R., Ghorbanhosseini, A.: Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber. Int. J. Mech. Mater. Des. 14, 37–50 (2018)

    Article  Google Scholar 

  • Ray, M.C., Kundalwal, S.I.: A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes. Eur. J. Mech. A/Solids 44, 41–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38(8), 884–907 (2006)

    Article  Google Scholar 

  • Sham, M.L., Kim, J.K.: Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages. J. Appl. Polym. Sci. 96(1), 175–182 (2005)

    Article  Google Scholar 

  • Sharma, S.P., Lakkad, S.C.: Impact behavior and fractographic study of carbon nanotubes grafted carbon fiber-reinforced epoxy matrix multi-scale hybrid composites. Compos. A Appl. Sci. Manuf. 69, 124–131 (2015)

    Article  Google Scholar 

  • Shirasu, K., Yamamoto, G., Tamaki, I., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Negative axial thermal expansion coefficient of carbon nanotubes: experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon 95, 904–909 (2015)

    Article  Google Scholar 

  • Shirasu, K., Nakamura, A., Yamamoto, G., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T.: Potential use of CNTs for production of zero thermal expansion coefficient composite materials: an experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests. Compos. A Appl. Sci. Manuf. 95, 152–160 (2017)

    Article  Google Scholar 

  • Shokrieh, M.M., Daneshvar, A., Akbari, S.: Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes. Mater. Des. 53, 209–216 (2014)

    Article  Google Scholar 

  • Sideridis, E.: Thermal expansion coefficients of fiber composites defined by the concept of the interphase. Compos. Sci. Technol. 51(3), 301–317 (1994)

    Article  MathSciNet  Google Scholar 

  • Tarfaoui, M., Lafdi, K., El Moumen, A.: Mechanical properties of carbon nanotubes based polymer composites. Compos. B Eng. 103, 113–121 (2016)

    Article  Google Scholar 

  • Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. B Eng. 41(1), 106–115 (2010)

    Article  Google Scholar 

  • Xu, Y., Ray, G., Abdel-Magid, B.: Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos. A Appl. Sci. Manuf. 37(1), 114–121 (2006)

    Article  Google Scholar 

  • Yao, S.S., Jin, F.L., Rhee, K.Y., Hui, D., Park, S.J.: Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos. B Eng. 142, 241–250 (2018)

    Article  Google Scholar 

  • Zare, Y.: Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech. Mater. 85, 1–6 (2015)

    Article  Google Scholar 

  • Zhang, J., Dui, G., Liang, X.: Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending. Int. J. Mech. Sci. 136, 339–348 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Hassanzadeh-Aghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh-Aghdam, M.K., Ansari, R. Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs. Int J Mech Mater Des 15, 471–488 (2019). https://doi.org/10.1007/s10999-018-9418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9418-5

Keywords

Navigation