Skip to main content
Log in

Application of BIB polishing technology in cross-section preparation of porous, layered and powder materials: A review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

For the accuracy of experimental results, preparing a high quality polished surface and cross-section of the materials for further analysis using electron back-scattered diffraction (EBSD), electron probe microanalysis (EPMA), and scanning probe microscopy (SPM) is extremely important. Broad ion beam (BIB) polishing, a method based on the principle of ion bombardment, has irreplaceable advantages. It makes up for the drawbacks and limitations of traditional polishing methods such as mechanical polishing, electrochemical polishing, and chemical polishing. The ions will not leave the bombardment area during polishing, which makes the BIB method suitable for porous materials. The energy of the ion beam can be adjusted according to the sample to reduce the deformation and strain of the polishing area, especially for fragile, soft, and hard materials. The conditions that need to be controlled during BIB polishing are simple. This paper demonstrated the unique advantages of BIB polishing technology in porous, layered and powder materials characterization through some typical application examples, and guided more researchers to understand and utilize BIB polishing technology in the development of new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen Y L, Zhu S M, Lee S J, et al. The technology combined electrochemical mechanical polishing. Journal of Materials Processing Technology, 2003, 140(1–3): 203–205

    Article  CAS  Google Scholar 

  2. Lee S J, Lee Y M, Du M F. The polishing mechanism of electrochemical mechanical polishing technology. Journal of Materials Processing Technology, 2003, 140(1–3): 280–286

    Article  CAS  Google Scholar 

  3. Ein-Eli Y, Starosvetsky D. Review on copper chemical-mechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated (ULSI) — An electrochemical perspective. Electrochimica Acta, 2007, 52(5): 1825–1838

    Article  CAS  Google Scholar 

  4. Barbosa F O, Gomes J A, de Araújo M C. Influence of electrochemical polishing on the mechanical properties of K3 nickel-titanium rotary instruments. Journal of Endodontics, 2008, 34(12): 1533–1536

    Article  Google Scholar 

  5. Chu X, Bai L, Chen T. Investigation on the electrochemical-mechanical polishing of NiP substrate of hard disk. Rare Metal Materials and Engineering, 2011, 40(11): 1906–1909

    Article  CAS  Google Scholar 

  6. Skubal L R, Walters D R. Chemical polishing of aluminum coupons in support of vacuum chambers. Vacuum, 2013, 96: 1–6

    Article  CAS  Google Scholar 

  7. Shan K, Zhou P, Cai J, et al. Electrogenerated chemical polishing of copper. Precision Engineering, 2015, 39: 161–166

    Article  Google Scholar 

  8. Janoš P, Ederer J, Pilařová V, et al. Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency. Wear, 2016, 362–363: 114–120

    Article  CAS  Google Scholar 

  9. Tatsumi N, Harano K, Ito T, et al. Polishing mechanism and surface damage analysis of type IIa single crystal diamond processed by mechanical and chemical polishing methods. Diamond and Related Materials, 2016, 63: 80–85

    Article  CAS  Google Scholar 

  10. Deng H, Huang R, Liu K, et al. Abrasive-free polishing of tungsten alloy using electrochemical etching. Electrochemistry Communications, 2017, 82: 80–84

    Article  CAS  Google Scholar 

  11. Zhang L, Zhang B, Pan B, et al. Germanium electrochemical study and its CMP application. Applied Surface Science, 2017, 422: 247–256

    Article  CAS  Google Scholar 

  12. Erdman N, Campbell R, Asahina S. Precise SEM cross-section polishing via argon beam milling. Microscopy Today, 2006, 14(3): 22–25

    Article  Google Scholar 

  13. Takahashi Y, Tanaka M, Higashida K, et al. High-voltage electron-microscopic observation of cyclic slip behavior around a fatigue crack tip in an iron alloy. Scripta Materialia, 2009, 60(8): 717–720

    Article  CAS  Google Scholar 

  14. Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12): 848–861

    Article  Google Scholar 

  15. Takahashi H, Sato A, Takakura M, et al. A new method of surface preparation for high spatial resolution EPMA/SEM with an argon ion beam. Mikrochimica Acta, 2006, 155(1–2): 295–300

    Article  CAS  Google Scholar 

  16. Yasuhara A. Development of ion slicer (thin-film specimen preparation equipment). JEOL News, 2005, 40(1): 46–49

    Google Scholar 

  17. Sigmund P. Sputtering by ion bombardment: Theoretical concept. In: Behrisch R, ed. Sputtering by Particle Bombardment I. Berlin/Heidelberg, Germany: Springer, 1981

    Google Scholar 

  18. Gamo K. Ion beam assisted etching and deposition. Journal of Vacuum Science & Technology B, 1990, 8: 1927

    Article  CAS  Google Scholar 

  19. Barna A. Topographic kinetics and practice of low angle ion beam thinning. Proceedings of the Materials Research Society, 1991, 254: 3–22

    Article  Google Scholar 

  20. Barna A, Pécz B. Simple method for the preparation of InP based samples for TEM investigation. Journal of Electron Microscopy Technique, 1991, 18(3): 325–328

    Article  CAS  Google Scholar 

  21. Cullis A G, Chew N G. Ion milling of compound semiconductors for transmission electron microscopy. Proceedings of the Materials Research Society, 1987, 115: 3–14

    Article  Google Scholar 

  22. Hauffe W. Production of microstructures by ion beam sputtering. In: Heidelberg S B, ed. Sputtering by Particle Bombardment III. Berlin/Heidelberg, Germany: Springer, 1991, 305–338

    Chapter  Google Scholar 

  23. Ishitani T, Yaguchi T. Cross-sectional sample preparation by focused ion beam: a review of ion-sample interaction. Microscopy Research and Technique, 1996, 35(4): 320–333

    Article  CAS  Google Scholar 

  24. Desbois G, Urai J L, Kukla P A, et al. High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: A new approach to investigate microstructures from mm- to nm-scale combining argon beam cross-sectioning and SEM imaging. Journal of Petroleum Science and Engineering, 2011, 78(2): 243–257

    Article  CAS  Google Scholar 

  25. Hemes S, Desbois G, Urai J L, et al. Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray µ-CT, 2D BIB-SEM and FIB-SEM tomography. Microporous and Mesoporous Materials, 2015, 208: 1–20

    Article  CAS  Google Scholar 

  26. Houben M E, Desbois G, Urai J L. A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods. Marine and Petroleum Geology, 2014, 49: 143–161

    Article  Google Scholar 

  27. Desbois G, Urai J L, Hemes S, et al. Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM. Engineering Geology, 2014, 179: 117–131

    Article  Google Scholar 

  28. Houben M E, Desbois G, Urai J L. Pore morphology and distribution in the Shalyfacies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D BIB-SEM investigations on mm to nm scale. Applied Clay Science, 2013, 71: 82–97

    Article  CAS  Google Scholar 

  29. Giffin S, Littke R, Klaver J, et al. Application of BIB-SEM technology to characterize macropore morphology in coal. International Journal of Coal Geology, 2013, 114: 85–95

    Article  CAS  Google Scholar 

  30. Klaver J, Desbois G, Littke R, et al. BIB-SEM pore characterization of mature and post mature Posidonia Shale samples from the Hils area, Germany. International Journal of Coal Geology, 2016, 158: 78–89

    Article  CAS  Google Scholar 

  31. Desbois G, Urai J L, Hemes S, et al. Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany). Journal of Petroleum Science and Engineering, 2016, 140: 128–148

    Article  CAS  Google Scholar 

  32. Klaver J, Desbois G, Littke R, et al. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 2015, 59: 451–466

    Article  CAS  Google Scholar 

  33. Klaver J, Desbois G, Urai J L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. International Journal of Coal Geology, 2012, 103: 12–25

    Article  CAS  Google Scholar 

  34. Desbois G, Urai J L, de Bresser J H P. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low differential stress (Qom Kuh salt fountain, central Iran): Implications for rheology and transport properties. Journal of Structural Geology, 2012, 43: 128–143

    Article  Google Scholar 

  35. Desbois G, Urai J L, Kukla P A. Morphology of the pore space in claystones — evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth, 2009, 4(1): 15–22

    Article  Google Scholar 

  36. Olanipekun B J, Azmy K. Genesis and morphology of intracrystalline nanopores and mineral micro inclusions hosted in burial dolomite crystals: Application of broad ion beam-scanning electron microscope (BIB-SEM). Marine and Petroleum Geology, 2016, 74: 1–11

    Article  CAS  Google Scholar 

  37. Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 2012, 96(6): 1099–1119

    Article  CAS  Google Scholar 

  38. Chalmers G, Bustin R M, Powers I. A pore by any other name would be as small the importance of meso- and microporosity in shale gas capacity. In: Proceedings of the AAPG Annual Convention and Exhibition, Denver, CO, USA, 7–10 June 2009

    Google Scholar 

  39. Desbois G, Urai J L, Pérez-Willard F, et al. Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. Journal of Microscopy, 2013, 249(3): 215–235

    Article  CAS  Google Scholar 

  40. Hemes S, Desbois G, Urai J L, et al. Variations in the morphology of porosity in the boom clay formation: Insights from 2D high resolution BIB-SEM imaging and mercury injection porosimetry. Netherlands Journal of Geosciences, 2014, 92: 275–300

    Article  Google Scholar 

  41. Dong H, Blunt M J. Pore-network extraction from micro-computerized-tomography images. Physical Review E, 2009, 80 (3): 036307

    Article  CAS  Google Scholar 

  42. Davis M E. New vistas in zeolite and molecular sieve catalysis. Accounts of Chemical Research, 1993, 26(3): 111–115

    Article  CAS  Google Scholar 

  43. Kikuchi T, Kawashima J, Natsui S, et al. Fabrication of porous tungsten oxide via anodizing in an ammonium nitrate/ethylene glycol/water mixture for visible light-driven photocatalyst. Applied Surface Science, 2017, 422: 130–137

    Article  CAS  Google Scholar 

  44. Stevens S M, Loiola A R, Cubillas P, et al. Hierarchical porous materials: Internal structure revealed by argon ion-beam cross-section polishing, HRSEM and AFM. Solid State Sciences, 2011, 13(4): 745–749

    Article  CAS  Google Scholar 

  45. Grobe A, Schmatz J, Littke R, et al. Enhanced surface flatness of vitrinite particles by broad ion beam polishing and implications for reflectance measurements. International Journal of Coal Geology, 2017, 180: 113–121

    Article  CAS  Google Scholar 

  46. De Sitter K, Dotremont C, Genné I, et al. The use of nanoparticles as alternative pore former for the production of more sustainable polyethersulfone ultrafiltration membranes. Journal of Membrane Science, 2014, 471: 168–178

    Article  CAS  Google Scholar 

  47. Honma T, Kamata H, Tatami J. Microstructure of seal formed between a Nb wire and an Al2O3 capillary melted by YAG laser radiation. Ceramics International, 2013, 39(5): 4861–4875

    Article  CAS  Google Scholar 

  48. Sen T, Tiddy G J T, Casci J L, et al. Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids: A study of emulsion-mediated synthesis. Microporous and Mesoporous Materials, 2005, 78(2–3): 255–263

    Article  CAS  Google Scholar 

  49. Liu C, Xiang M, Fu Z, et al. Microstructural refinement in spark plasma sintering 3Y-TZP nanoceramics. Journal of the European Ceramic Society, 2016, 36(10): 2565–2571

    Article  CAS  Google Scholar 

  50. Asama K, Matsuda T, Ogura T, et al. Low-temperature metal-to-alumina direct bonding process utilizing redox reaction between silver oxide and organic agent. Materials Science and Engineering A, 2017, 702: 398–405

    Article  CAS  Google Scholar 

  51. Kim M S, Nishikawa H. Effects of bonding temperature on microstructure, fracture behavior and joint strength of Ag nanoporous bonding for high temperature die attach. Materials Science and Engineering A, 2015, 645: 264–272

    Article  CAS  Google Scholar 

  52. Pekarčíková M, Skarba M, Konopka P, et al. Investigation of defects in functional layer of high temperature superconducting tapes. Physica C, 2014, 497: 24–29

    Article  CAS  Google Scholar 

  53. Romankov S, Hayasaka Y, Shchetinin I V, et al. Joining and microstructural development of Ni–Al–Ti sheets under ball collisions. Acta Materialia, 2012, 60(5): 2196–2208

    Article  CAS  Google Scholar 

  54. Lee K, Kim K S, Tsukada Y, et al. Influence of crystallographic orientation of Sn–Ag–Cu on electromigration in flip-chip joint. Microelectronics and Reliability, 2011, 51(12): 2290–2297

    Article  CAS  Google Scholar 

  55. Liao J, Yamamoto N, Liu H, et al. Microstructure at friction stir lap joint interface of pure titanium and steel. Materials Letters, 2010, 64(21): 2317–2320

    Article  CAS  Google Scholar 

  56. Romankov S, Park Y C, Shchetinin I V. Deformation-induced plastic flow and mechanical intermixing of intentionally introduced impurities into a Ni sheet under ball collisions. Journal of Alloys and Compounds, 2017, 694: 1121–1132

    Article  CAS  Google Scholar 

  57. Romankov S, Shchetinin I V, Park Y C. Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions. Applied Surface Science, 2015, 343: 94–105

    Article  CAS  Google Scholar 

  58. Asakura M, Kominami Y, Hayashi T, et al. The effect of zinc levels in a gold-based alloy on porcelain-metal bonding. Dental Materials, 2012, 28(5): e35–e41

    Article  CAS  Google Scholar 

  59. Yu C Y, Chen W Y, Duh J G. Improving the impact toughness of Sn-Ag-Cu/Cu-Zn Pb-free solder joints under high speed shear testing. Journal of Alloys and Compounds, 2014, 586: 633–638

    Article  CAS  Google Scholar 

  60. Paknejad S A, Dumas G, West G, et al. Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates. Journal of Alloys and Compounds, 2014, 617: 994–1001

    Article  CAS  Google Scholar 

  61. Hwang S M, Lim Y G, Kim J G, et al. A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy, 2014, 10: 53–62

    Article  CAS  Google Scholar 

  62. Yoon T, Park S, Mun J, et al. Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. Journal of Power Sources, 2012, 215: 312–316

    Article  CAS  Google Scholar 

  63. Claes S, Vandezande P, Mullens S, et al. High flux composite PTMSP-silica nanohybrid membranes for the pervaporation of ethanol/water mixtures. Journal of Membrane Science, 2010, 351 (1–2): 160–167

    Article  CAS  Google Scholar 

  64. Ravelingien M, Mullens S, Luyten J, et al. Thermal decomposition of bioactive sodium titanate surfaces. Applied Surface Science, 2009, 255(23): 9539–9542

    Article  CAS  Google Scholar 

  65. Voß H, Diefenbacher A, Schuch G, et al. Butene isomers separation on titania supported MFI membranes at conditions relevant for practice. Journal of Membrane Science, 2009, 329(1–2): 11–17

    Article  CAS  Google Scholar 

  66. Romankov S, Hayasaka Y, Kalikova G, et al. TEM study of TiN coatings fabricated by mechanical milling using vibration technique. Surface and Coatings Technology, 2009, 203(13): 1879–1884

    Article  CAS  Google Scholar 

  67. Komarov S V, Son S H, Hayashi N, et al. Development of a novel method for mechanical plating using ultrasonic vibrations. Surface and Coatings Technology, 2007, 201(16–17): 6999–7006

    Article  CAS  Google Scholar 

  68. Al Jabbari Y S, Koutsoukis T, Al Hadlaq S, et al. Surface and cross-sectional characterization of titanium-nitride coated nickel-titanium endodontic files. Journal of Dental Sciences, 2016, 11(1): 48–53

    Article  Google Scholar 

  69. Romankov S, Komarov S V, Vdovichenko E, et al. Fabrication of TiN coatings using mechanical milling techniques. International Journal of Refractory Metals & Hard Materials, 2009, 27(2): 492–497

    Article  CAS  Google Scholar 

  70. Song G M, Vystavel T, van der Pers N, et al. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel. Acta Materialia, 2012, 60(6–7): 2973–2981

    Article  CAS  Google Scholar 

  71. Lafort A, Kebaili H, Goumri-Said S, et al. Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies. Thin Solid Films, 2011, 519(10): 3283–3287

    Article  CAS  Google Scholar 

  72. Hong M H, Lee D H, Kim K M, et al. Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation. Thin Solid Films, 2011, 519(20): 7065–7070

    Article  CAS  Google Scholar 

  73. Arai S, Sato T, Endo M. Fabrication of various electroless Ni-P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin. Surface and Coatings Technology, 2011, 205(10): 3175–3181

    Article  CAS  Google Scholar 

  74. Parish C M, Snow C S, Kammler D R, et al. Processing effects on microstructure in Er and ErD2 thin-films. Journal of Nuclear Materials, 2010, 403(1–3): 191–197

    Article  CAS  Google Scholar 

  75. Jiao Z, Ueno A, Suzuki Y, et al. Study on the influences of reduction temperature on nickel–yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode. Journal of Power Sources, 2016, 328: 377–384

    Article  CAS  Google Scholar 

  76. Romankov S, Hayasaka Y, Kasai E, et al. Fabrication of nanostructured Mo coatings on Al and Ti substrates by ball impact cladding. Surface and Coatings Technology, 2010, 205(7): 2313–2321

    Article  CAS  Google Scholar 

  77. Romankov S, Kaloshkin S D, Hayasaka Y, et al. Structural evolution of the Ti–Al coatings produced by mechanical alloying technique. Journal of Alloys and Compounds, 2009, 483(1–2): 386–388

    Article  CAS  Google Scholar 

  78. Romankov S, Kaloshkin S D, Hayasaka Y, et al. Effect of process parameters on the formation of Ti–Al coatings fabricated by mechanical milling. Journal of Alloys and Compounds, 2009, 484 (1–2): 665–673

    Article  CAS  Google Scholar 

  79. Romankov S, Hayasaka Y, Hayashi N, et al. Ball impact cladding of metals with dissimilar metallic foils. Surface and Coatings Technology, 2009, 204(1–2): 125–130

    Article  CAS  Google Scholar 

  80. Falk-Windisch H, Claquesin J, Svensson J E, et al. The effect of metallic Co-coating thickness on ferritic stainless steels intended for use as interconnect material in intermediate temperature solid oxide fuel cells. Oxidation of Metals, 2018, 89(1–2): 233–250

    Article  CAS  Google Scholar 

  81. Falk-Windisch H, Claquesin J, Sattari M, et al. Co- and Ce/Co-coated ferritic stainless steel as interconnect material for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2017, 343: 1–10

    Article  CAS  Google Scholar 

  82. Liu T, Wang C, Shen H, et al. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys. Corrosion Science, 2013, 76: 310–316

    Article  CAS  Google Scholar 

  83. Yu C Y, Duh J G. Stabilization of hexagonal Cu6(Sn,Zn)5 by minor Zn doping of Sn-based solder joints. Scripta Materialia, 2011, 65(9): 783–786

    Article  CAS  Google Scholar 

  84. Cheng X, Putz K W, Wood C D, et al. Characterization of local elastic modulus in confined polymer films via AFM indentation. Macromolecular Rapid Communications, 2015, 36(4): 391–397

    Article  CAS  Google Scholar 

  85. Thomas A, Andersson J, Grüner D, et al. Direct observation of bone coherence with dental implants. Journal of the European Ceramic Society, 2012, 32(11): 2607–2612

    Article  CAS  Google Scholar 

  86. Fahlteich J, Steiner C, Schiller N, et al. Roll-to-roll thin film coating on fluoropolymer webs — Status, challenges and applications. Surface and Coatings Technology, 2017, 314: 160–168

    Article  CAS  Google Scholar 

  87. Shimazu M, Yamaji K, Kishimoto H, et al. Stability of Sc2O3 and CeO2 co-doped ZrO2 electrolyte during the operation of solid oxide fuel cells: Part III. Detailed mechanism of the decomposition. Solid State Ionics, 2012, 224: 6–14

    Article  CAS  Google Scholar 

  88. Hille T S, Nijdam T J, Suiker A S J, et al. Damage growth triggered by interface irregularities in thermal barrier coatings. Acta Materialia, 2009, 57(9): 2624–2630

    Article  CAS  Google Scholar 

  89. Jo Y N, Kim Y, Kim J S, et al. Si-graphite composites as anode materials for lithium secondary batteries. Journal of Power Sources, 2010, 195(18): 6031–6036

    Article  CAS  Google Scholar 

  90. Kim J H, Yonezawa S, Takashima M. Preparation and characterization of carbon composite plates using Ni–PTFE composite nano-plating. Applied Surface Science, 2013, 279: 329–333

    Article  CAS  Google Scholar 

  91. Kim J H, Yonezawa S, Takashima M. Preparation and characterization of C/Ni-PTFE electrode using Ni-PTFE composite plating for alkaline fuel cells. International Journal of Hydrogen Energy, 2011, 36(2): 1720–1729

    Article  CAS  Google Scholar 

  92. Woo S G, Kim J H, Kim H R, et al. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells. Journal of Electroanalytical Chemistry, 2017, 799: 315–320

    Article  CAS  Google Scholar 

  93. Kim H R, Woo S G, Kim J H, et al. Capacity fading behavior of Ni-rich layered cathode materials in Li-ion full cells. Journal of Electroanalytical Chemistry, 2016, 782: 168–173

    Article  CAS  Google Scholar 

  94. Xiong Y, Hu J, Shen Z. Dynamic pore coalescence in nanoceramic consolidated by two-step sintering procedure. Journal of the European Ceramic Society, 2013, 33(11): 2087–2092

    Article  CAS  Google Scholar 

  95. Oertel T, Hutter F, Tänzer R, et al. Primary particle size and agglomerate size effects of amorphous silica in ultra-high performance concrete. Cement and Concrete Composites, 2013, 37: 61–67

    Article  CAS  Google Scholar 

  96. Arai S, Suzuki Y, Nakagawa J, et al. Fabrication of metal coated carbon nanotubes by electroless deposition for improved wett-ability with molten aluminum. Surface and Coatings Technology, 2012, 212: 207–213

    Article  CAS  Google Scholar 

  97. Lin Y S, Duh J G. Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries. Journal of Power Sources, 2011, 196(24): 10698–10703

    Article  CAS  Google Scholar 

  98. Cho K, Ryoo R, Asahina S, et al. Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation. Solid State Sciences, 2011, 13(4): 750–756

    Article  CAS  Google Scholar 

  99. Kim J H, Yonezawa S, Takashima M. Preparation and characterization of Ni-PTFE plate as an electrode for alkaline fuel cell: Effects of conducting materials on the performance of electrode. International Journal of Hydrogen Energy, 2010, 35(16): 8707–8714

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial supports by the Science and Technology Major Project of Ningbo (Grant No. 2015S1001), the Youth Innovation Promotion Association CAS (Grant No. 2016273), the Ningbo Natural Science Foundation (Grant No. 2017A610039), and the Ningbo Science and Technology Plan Projects (Grant No. 2017F10015). Conceptualization, R.J., Y.Y.; Methodology, M.L.; Software, Y.Y.; Validation, J.G., Y.Y., R.J.; Investigation, R.J.; Data curation, Y.Y., M.L.; Writing-original draft preparation, R.J.; Writing-review & editing, Y.Y., H.L.; Supervision, M.L.; Project administration, H.L.; Funding acquisition, M.L., H.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanming Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Li, M., Yao, Y. et al. Application of BIB polishing technology in cross-section preparation of porous, layered and powder materials: A review. Front. Mater. Sci. 13, 107–125 (2019). https://doi.org/10.1007/s11706-019-0457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0457-0

Keywords

Navigation