Skip to main content

Advertisement

Log in

Nitrate Reductase mediated synthesis of surface passivated nanogold as broad-spectrum antibacterial agent

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The green synthesis of gold nanoparticles has attracted tremendous interest owing to their unique physicochemical properties and widespread applications which are primarily size-dependent. The stability, less reaction time, and use of biological resources as novel nanofactories as an alternative to conventional synthesis strategies are the main objectives of green synthesis approaches. However, to attain size-controlled synthesis from the biogenic route is still a challenge. Hence, use of nontoxic stabilizers becomes increasingly essential. Herein, we describe an emerging, simple, nonconventional approach to synthesize stable and size-controlled biogenic nanogold using cell lysate supernatant containing nitrate reductase of Bacillus licheniformis in the presence of Tween 20 and dodecanethiol respectively. The face-centered central composite design used for the optimization of gold nanoparticles (AuNPs) biosynthesis. The maximum AuNPs biosynthesis obtained using the optimized media variables, glucose (2.1 g/L), peptone (14.05 g/L), yeast extract (4.14 g/L), and potassium nitrate (3.91 g/L) was 0.769 a.u. Highly stable monodispersed nanogold of 10.4 ± 0.6 nm and 12.5 ± 0.9 nm sizes arranged in ordered self-assembly was obtained. The stability profile and kinetics of bioreduction was evaluated with respect to time, and the involvement of the nitrate reductase enzyme in bioreduction was validated by inhibitor study. The physicochemical properties of biogenic nanoparticles were characterized using multiple spectroscopy and microscopy techniques. The obtained nanogold demonstrated excellent bactericidal property against both gram-negative and gram-positive bacteria in size-dependent manner and thus could find tremendous utility in clinical, biological, and environmental applications as a broad-spectrum antibacterial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  2. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107:3180–3211

    Article  CAS  Google Scholar 

  3. Guo R, Song Y, Wang G, Murray RW (2005) Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J Am Chem Soc 127:2752–2757

    Article  CAS  Google Scholar 

  4. Edelman ER, Seifert P, Groothuis A, Morss A, Bornstein D, Rogers C (2001) Gold-coated NIR stents in porcine coronary arteries. Circulation 103:429–434

    Article  CAS  Google Scholar 

  5. Svedman C, Dunér K, Kehler M, Möller H, Gruvberger B, Bruze M (2006) Lichenoid reactions to gold from dental restorations and exposure to gold through intracoronary implant of a gold-plated stent. Clin Res Cardiol 95:689–691

    Article  CAS  Google Scholar 

  6. Sun RWY, Ma DL, Wong ELM, Che CM (2007) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans 43:4884–4892

    Google Scholar 

  7. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11:3530–3534

    Article  CAS  Google Scholar 

  8. Hohnstedt L, Miniatas B, Waller SMC (1965) Aqueous sodium borohydride chemistry. The colnage metals, copper, silver and gold. Anal Chem 37:1163–1164

    Article  CAS  Google Scholar 

  9. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  10. Kaur J, Tikoo K (2013) Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles. Food Chem Toxicol 51:1–14

    Article  CAS  Google Scholar 

  11. Vijayakumar S, Ganesan S (2012) In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J Nanomater 2012:1–9

    Article  CAS  Google Scholar 

  12. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24:1415–1426

    Article  CAS  Google Scholar 

  13. Singh S, Vidyarthi AS, Dev A (2015) Microbial synthesis of nanoparticles: an overview. In: Singh OV (ed) Bio-nanoparticles: biosynthesis and sustainable biotechnological implications. John Wiley & Sons, USA, pp 155–186

    Google Scholar 

  14. Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, Fu J (2009) Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res 11:279–288

    Article  CAS  Google Scholar 

  15. Du L, Xian L, Feng JX (2011) Rapid extra/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930

    Article  CAS  Google Scholar 

  16. Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:1–9

    Article  CAS  Google Scholar 

  17. Singh S, Vidyarthi AS, Nigam VK, Dev A (2014) Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis. Artif Cells Nanomed Biotechnol 42:6–12

    Article  CAS  Google Scholar 

  18. Nangia Y, Wangoo N, Sharma S, Wu JS, Dravid V, Shekhawat G, Raman Suri C (2009) Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl Phys Lett 94:233901–233903

    Article  CAS  Google Scholar 

  19. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B 75:335–341

    Article  CAS  Google Scholar 

  20. Gwynne P (2013) There’s gold in them there bugs. Nature 495:S12–S13

    Article  CAS  Google Scholar 

  21. Kerr RA (2006) Bacteria help grow gold nuggets from dirt. Science 313:159

    Article  CAS  Google Scholar 

  22. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  23. Mahdieh M, Zolanvari A, Azimee AS (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iran 19:926–929

    Article  CAS  Google Scholar 

  24. Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  25. Luo CH, Shanmugam V, Yeh CS (2015) Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Mater 7:1–11

    Article  CAS  Google Scholar 

  26. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    Article  CAS  Google Scholar 

  27. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  28. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:1–11

    Article  Google Scholar 

  29. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  30. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  31. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  32. Kvitek L, Panáček A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecová M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    Article  CAS  Google Scholar 

  33. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  34. Duy J, Connell LB, Eck W, Collins SD, Smith RL (2010) Preparation of surfactant-stabilized gold nanoparticle–peptide nucleic acid conjugates. J Nanopart Res 12:2363–2369

    Article  CAS  Google Scholar 

  35. Essaidi A, Chakif M, Schöps B, Aumman A, Xiao S, Esen C, Ostendorf A (2013) Size control of gold nanoparticles during laser ablation in liquids with different functional molecules. J Laser Micro/Nanoeng 8:131–136

    Article  CAS  Google Scholar 

  36. Hormozi-Nezhad MR, Karami P, Robatjazi H (2013) A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants. RSC Adv 3:7726–7732

    Article  CAS  Google Scholar 

  37. Jain T, Tehrani-Bagha AR, Shekhar H, Crawford R, Johnson E, Nørgaard K, Holmberg K, Erhart P, Moth-Poulsen K (2014) Anisotropic growth of gold nanoparticles using cationic gemini surfactants: effects of structure variations in head and tail groups. J Mater Chem C 2:994–1003

    Article  CAS  Google Scholar 

  38. Das A, Chadha R, Maiti N, Kapoor S (2014) Role of surfactant in the formation of gold nanoparticles in aqueous medium. J Nanopart 2014:1–7

    Article  CAS  Google Scholar 

  39. Parish C, Classon B, Tsagaratos J, Walker I, Kirszbaum L, McKenzie I (1986) Fractionation of detergent lysates of cells by ammonium sulphate-induced phase separation. Anal Biochem 156:495–502

    Article  CAS  Google Scholar 

  40. Sohaskey CD (2005) Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology 151:3803–3810

    Article  CAS  Google Scholar 

  41. Neugebauer JM (1990) Detergents: an overview. Methods Enzymol 182:239–253

    Article  CAS  Google Scholar 

  42. Persson J, Nyström L, Ageland H, Tjerneld F (1999) Purification of recombinant and human apolipoprotein A-1 using surfactant micelles in aqueous two-phase systems: recycling of thermoseparating polymer and surfactant with temperature-induced phase separation. Biotechnol Bioeng 65:371–381

    Article  CAS  Google Scholar 

  43. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  Google Scholar 

  44. Lee H, Yeo S, Jeong S (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204

    Article  CAS  Google Scholar 

  45. Sabbani S, Gallego-Perez D, Nagy A, James WW, Hansford D, Dutta PK (2010) Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate. Microporous Mesoporous Mater 135:131–136

    Article  CAS  Google Scholar 

  46. Lima E, Guerra R, Lara V, Guzmán A (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 7:1–7

    Article  CAS  Google Scholar 

  47. Huang J, Lima E, Akita T, Guzmán A, Qi C, Takei T, Haruta M (2011) Propene epoxidation with O2 and H2: identification of the most active gold clusters. J Catal 278:8–15

    Article  CAS  Google Scholar 

  48. Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11:243–248

    Article  CAS  Google Scholar 

  49. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B 107:227–234

    Article  CAS  Google Scholar 

  50. Redinbaugh M, Campbell WH (1985) Quaternary structure and composition of squash NADH: nitrate reductase. J Biol Chem 260:3380–3385

    CAS  Google Scholar 

  51. Adahoun MAA, Al-Akhras MAH, Jaafar MS, Bououdina M (2017) Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif Cells Nanomed Biotechnol 45:98–107

    Article  CAS  Google Scholar 

  52. Amy NK, Garrett RH (1974) Purification and characterization of the nitrate reductase from the diatom Thalassiosira pseudonana. Plant Physiol 54:629–637

    Article  CAS  Google Scholar 

  53. Baş D, Boyaci İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  CAS  Google Scholar 

  54. Hanchinal VM, Survase SA, Sawant SK, Annapure US (2008) Response surface methodology in media optimization for production of b-carotene from Daucus carota. Plant Cell Tissue Organ Cult 93:123–132

    Article  CAS  Google Scholar 

  55. Premkumar T, Lee K, Geckeler KE (2011) Shape-tailoring of gold nanostructures: can a detergent act as the reducing or protecting agent? Nanoscale 3:1482–1484

    Article  CAS  Google Scholar 

  56. Liu X, Wu N, Wunsch BH, Barsotti RJ, Stellacci F (2006) Shape-controlled growth of micrometer-sized gold crystals by a slow reduction method. Small 2:1046–1050

    Article  CAS  Google Scholar 

  57. Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci 106:17757–17762

    Article  CAS  Google Scholar 

  58. Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10:1–8

    Article  CAS  Google Scholar 

  59. Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E (2012) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 14:1322–1334

    Article  CAS  Google Scholar 

  60. Ogi T, Saitoh N, Nomura T, Konishi Y (2010) Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res 12:2531–2539

    Article  CAS  Google Scholar 

  61. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  62. Murphy BM, Prescott SW, Larson I (2005) Measurement of lactose crystallinity using Raman spectroscopy. J Pharm Biomed Anal 38:186–190

    Article  CAS  Google Scholar 

  63. Gole A, Dash C, Soman C, Sainkar S, Rao M, Sastry M (2001) On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjug Chem 12:684–690

    Article  CAS  Google Scholar 

  64. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  65. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  66. Kooij E, Ahmed W, Hellenthal C, Zandvliet H, Poelsema B (2012) From nanorods to nanostars: tuning the optical properties of gold nanoparticles. Colloids Surf A Physicochem Eng Asp 413:231–238

    Article  CAS  Google Scholar 

  67. Hughes JM, Budd PM, Grieve A, Dutta P, Tiede K, Lewis J (2015) Highly monodisperse, lanthanide containing polystyrene nanoparticles as potential standard reference materials for environmental “nano” fate analysis. J Appl Polym Sci 132:1–9

    Article  CAS  Google Scholar 

  68. Israelichvili JN (1991) Intermolecular and surface forces, 3rd edn. Academic Press, New York

    Google Scholar 

  69. Smith RJ, Lotya M, Coleman JN (2010) The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New J Phys 12:1–11

    Google Scholar 

  70. Bac L, Kim J, Kim J (2011) Size, optical and stability properties of gold nanoparticles synthesized by electrical explosion of wire in different aqueous media. Rev Adv Mater Sci 28:117–121

    CAS  Google Scholar 

  71. Aljabali A, Akkam Y, Al Zoubi M, Al-Batayneh K, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M, Evans DJ (2018) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8:1–15

    Article  CAS  Google Scholar 

  72. El Domany EB, Essam TM, Ahmed AE, Farghali AA (2018) biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J Appl Pharm Sci 8:119–128

    Article  Google Scholar 

  73. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702

    Article  CAS  Google Scholar 

  74. Vu XH, Duong TTT, Pham TTH, Trinh DK, Nguyen XH, Dang VS (2018) Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Adv Nat Sci Nanosci Nanotechnol 9:1–7

    Article  CAS  Google Scholar 

  75. Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1–7

    Article  Google Scholar 

  76. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10:1–9

    Article  CAS  Google Scholar 

  77. Demurtas M, Perry CC (2014) Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity. Gold Bull 47:103–107

    Article  CAS  Google Scholar 

  78. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  79. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  80. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E coli as a model for Gram negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  81. Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5:23–29

    Article  Google Scholar 

  82. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomater 33:2327–2333

    Article  CAS  Google Scholar 

  83. Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513

    Article  CAS  Google Scholar 

  84. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  Google Scholar 

  85. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thankfully acknowledge the technical assistance provided by Central Instrumentation Facility, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India.

Funding

Financial support was received from the University Grants Commission {F.No. 41-1336/2012(SR)} to carry out this research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Dev, A., Gupta, A. et al. Nitrate Reductase mediated synthesis of surface passivated nanogold as broad-spectrum antibacterial agent. Gold Bull 52, 197–216 (2019). https://doi.org/10.1007/s13404-019-00264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-019-00264-y

Keywords

Navigation