Skip to main content

Advertisement

Log in

Role of infrastructure and other environmental factors affecting the distribution of alien plants in the Tatra Mts

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Alien plants, although usually rare in mountain habitats, can significantly impact native species diversity. The aim of this study was to analyse patterns of alien plant distribution in the Tatra Mts (Slovakia), focusing primarily on comparison of various transportation routes as a conduit for the spread of alien plants. We collected data on transects along: (i) railways, (ii) paved roads with unlimited access, (iii) tourist routes in mountain valleys (paved and unpaved roads, footpaths) with limited access and (iv) plots in areas surrounding mountain chalets. The majority of alien plants were found in locations at lower elevations and with intensive human activity. Patterns of distribution along the main corridors in the Tatras reflect the intensity and manner of use of each transportation route. Paved roads with unlimited access and railways are used most frequently and host the greatest number of alien species. Our observations show that the mode of access of these routes is more important than the road surface. Roads with limited vehicular access, be it unpaved and paved, are very similar in their alien species richness, while paved roads with limited and unlimited access significantly differ. Footpaths that cannot be accessed by vehicles are almost free of alien plants, even though they are found in the widest elevation range and often parallel to roads in the same valley. Other factors significantly negatively affiliated with alien species richness were elevation, cover of the tree and moss layer and moisture, and positively affiliated with the amount of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht H, Eder E, Langbehn T, Tschiersch C (2011) The soil seed bank and its relationship to the established vegetation in urban wastelands. Landscape Urban Plan 100:87–97

    Google Scholar 

  • Alexander JM, Naylor B, Poll M, Edwards PJ, Dietz H (2009) Plant invasions along mountain roads: the altitudinal amplitude of alien Asteraceae forbs in their native and introduced ranges. Ecography 32:334–344

    Google Scholar 

  • Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, MIREN Consortium (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. P Natl Acad Sci USA 108:656–661

  • Ansong M, Pickering C (2013) Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars. PLOS ONE 8:e80275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arévalo JR, Delgado JD, Otto R, Naranjo A, Salas M, Fernández-Palacios JM (2005) Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect Plant Ecol Evol Syst 7:185–202

    Google Scholar 

  • Arévalo JR, Otto R, Escudero C, Fernández-Lugo S, Arteaga M, Delgado JD, Fernández-Palacios JM (2010) Do anthropogenic corridors homogenize plant communities at a local scale? A case studied in Tenerife (Canary Islands). Pl Ecol 209:23–35

    Google Scholar 

  • Badano EI, Villarroel E, Bustamante RO, Marquet PA, Cavieres LA (2007) Ecosystem engineering facilitates invasions by exotic plants in high-Andean ecosystems. J Ecol 95:682–688

    Google Scholar 

  • Barkman JJ, Doing H, Segal S (1964) Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot Neerl 13:394–419

    Google Scholar 

  • Barros A, Pickering CM (2014) Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the Southern Hemisphere. Mountain Res Devevelop 34:13–26

    Google Scholar 

  • Bashkin M, Stohlgren TJ, Otsuki Y, Lee M, Evangelista P, Belnap J (2003) Soil characteristics and plant exotic species invasions in the Grand Staircase – Escalante National Monument, Utah, USA. Appl Soil Ecol 22:67–77

    Google Scholar 

  • Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Pl Ecol Evol Syst 7:173–183

    Google Scholar 

  • Bergès L, Chevalier R, Avon C (2013) Influence of forest road, road-surfacing material and stand age on floristic diversity and composition in a nutrient-poor environment. Appl Veg Sci 16:470–479

    Google Scholar 

  • Bohuš I (1969) Vývoj vlastníckych pomerov v oblasti Tatranského národného parku v rokoch 1209–1918. Zborn TANAP 11:559–574

    Google Scholar 

  • Bohuš I (1972a) Historický vývoj Vysokých Tatier. Zborn TANAP 14:5–64

    Google Scholar 

  • Bohuš I (1972b) Ochrana prírody pred zriadením Tatranského národného parku. Zborn TANAP 14:185–224

    Google Scholar 

  • Catford JA, Jansson R (2014) Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol 204:19–36

    PubMed  Google Scholar 

  • Catford JA, Morris WK, Vesk PA, Gippel CJ, Downes BJ (2014) Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Diversity & Distrib 20:1084–1096

    Google Scholar 

  • Chytrý M, Pyšek P, Tichý L, Knollová I, Danihelka J (2005) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354

    Google Scholar 

  • Crisfield VE, MacDonald SE, Gould AJ (2012) Effects of recreational traffic on alpine plant communities in the Northern Canadian Rockies. Arct Antarc Alpine Res 44:277–287

    Google Scholar 

  • Dainese M, Kühn I, Bragazza L (2014) Alien plant species distribution in the European Alps: influence of species' climatic requirements. Biol Invas 16:815–831

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Google Scholar 

  • Essl F, Milasowszky N, Dirnbock T (2011) Plant invasions in temperate forests: Resistance or ephemeral phenomenon? Basic Appl Ecol 12:1–9

    Google Scholar 

  • Fox J (2003) Effect displays in R for generalised linear models. J Stat Softw 8:1–27

    Google Scholar 

  • Giraudoux P (2013) Miscellaneous functions for analysis and display of ecological and spatial data. Package ‘pgirmess’, version 1.5.8

  • Godfree R, Lepschi B, Mallinson D (2004) Ecological filtering of exotic plants in an Australian sub-alpine environment. J Veg Sci 15:227–236

    Google Scholar 

  • Haider S, Alexander J, Dietz H, Trepl L, Edwards PJ, Kueffer C (2010) The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol Invas 12:4003–4018

    Google Scholar 

  • Harvan L (1965) Ako sa vyriešila pastva v Tatranskom národnom parku. Zborn TANAP 8:231–253

    Google Scholar 

  • Hemp A (2008) Introduced plants on Kilimanjaro: tourism and its impact. Pl Ecol 197:17–29

    Google Scholar 

  • Hodkinson DJ, Thompson K (1997) Plant dispersal: the role of man. J Appl Ecol 34:1484–1496

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometr J 50:346–363

    Google Scholar 

  • Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in californian serpentine grassland. Ecology 71:478–491

    Google Scholar 

  • Jurko A (1990) Ekologické a socioekonomické hodnotenie vegetácie. Príroda, Bratislava

    Google Scholar 

  • Kalwij JM, Robertson MP, van Rensburg BJ (2008) Human activity facilitates altitudinal expansion of exotic plants along a road in montane grassland, South Africa. Appl Veg Sci 11:491–498

    Google Scholar 

  • Khuroo AA, Weber E, Malik AH, Reshi ZA, Dar GH (2011) Altitudinal distribution patterns of the native and alien woody flora in Kashmir Himalaya, India. Environm Res 111:967–977

    CAS  Google Scholar 

  • Konček M (1973) Klimatické pomery Tatier. Zborn TANAP 15:239–324

    Google Scholar 

  • Krajčovič A (1975) Vývoj lesného hospodárstva v oblasti Tatranského národného parku. Zborn TANAP 17:231–250

    Google Scholar 

  • Kreyling J, Beierkuhnlein C, Ellis L, Jentsch A (2008) Invasibility of grassland and heath communities exposed to extreme weather events – additive effects of diversity resistance and fluctuating physical environment. Oikos 117:1542–1554

    Google Scholar 

  • Lembrechts JJ, Milbau A, Nijs I (2014) Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLOS ONE 9:e89664

    PubMed  PubMed Central  Google Scholar 

  • Levine JM, Vilà M, D'Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Roy Soc, Ser B-Biol Sci 270:775–781

    Google Scholar 

  • Li W, Stevens MHH (2012) Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121:435–441

    Google Scholar 

  • Lukniš M (1973) Reliéf Tatranského národného parku. Zborn TANAP 15:89–144

    Google Scholar 

  • Marhold K (1998) Papraďorasty a semenné rastliny. In Marhold K, Hindák F (eds) Zoznam nižších a vyšších rastlín Slovenska. Veda, Bratislava, pp 333–687

    Google Scholar 

  • Marini L, Bertolli A, Bona E, Federici G, Martini F, Prosser F, Bommarco R (2013) Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains. Global Ecol Biogeogr 22:450–460

    Google Scholar 

  • Maskell LC, Firbank LG, Thompson K, Bullock JM, Smart SM (2006) Interactions between non-native plant species and the floristic composition of common habitats. J Ecol 94:1052–1060

    Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Google Scholar 

  • McDougall KL, Morgan JW, Walsh NG, Williams RJ (2005) Plant invasions in treeless vegetation of the Australian Alps. Perspect Pl Ecol 7:159–171

    Google Scholar 

  • McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Diversity & Distrib 17:103–111

    Google Scholar 

  • Medvecká J, Kliment J, Májeková J, Halada L, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I (2012) Inventory of the alien flora of Slovakia. Preslia 84:257–309

    Google Scholar 

  • Medvecká J, Jarolímek I, Senko D, Svitok M (2014) Fifty years of plant invasion dynamics in Slovakia along a 2,500 m altitudinal gradient. Biol Invas 16:1627–1638

    Google Scholar 

  • Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M (2002) Flowering plants and pteridophytes of Poland. A checklist. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

  • Moravec J (1994) Fytocenologie. Academia, Praha

    Google Scholar 

  • Mount A, Pickering CM (2009) Testing the capacity of clothing to act as a vector for non-native seed in protected areas. J Environm Managem 91:168–179

    Google Scholar 

  • Müllerová J, Vítková M, Vítek O (2011) The impacts of road and walking trails upon adjacent vegetation: Effects of road building materials on species composition in a nutrient poor environment. Sci Total Environm 409:3839–3849

    Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conservation Biol 18:238–248

    Google Scholar 

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain't no mountain high enough: plant invasions reaching new elevations. Frontiers Ecol Environm 7:479–486

    Google Scholar 

  • Petrášová M, Jarolímek I, Medvecká J (2013) Neophytes in Pannonian hardwood floodplain forests – History, present situation and trends. Forest Ecol Managem 308:31–39

    Google Scholar 

  • Pickering C, Hill W (2007a) Roadside weeds of the Snowy Mountains, Australia. Mountain Res Developm 27:359–367

    Google Scholar 

  • Pickering CM, Hill W (2007b) Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia. J Environm Managem 85:791–800

    Google Scholar 

  • Pickering CM, Mount A, Wichmann MC, Bullock JM (2011) Estimating human-mediated dispersal of seeds within an Australian protected area. Biol Invas 13:1869–1880

    Google Scholar 

  • Pollnac F, Seipel T, Repath C, Rew LJ (2012) Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol Invas 14:1753–1763

    Google Scholar 

  • Pyšek P (1998) Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25:155–163

    Google Scholar 

  • Pyšek P, Jarošík V, Kučera T (2002) Patterns of invasion in temperate nature reserves. Biol Conservation 104:13–24

    Google Scholar 

  • Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143

    Google Scholar 

  • Pyšek P, Jarošík V, Chytrý M, Kropáč Z, Tichý L, Wild J (2005) Alien plants in temperate weed communities: Prehistoric and recent invaders occupy different habitats. Ecology 86: 772–785

    Google Scholar 

  • Pyšek P, Jarošík V, Pergl J, Wild J (2011) Colonization of high altitudes by alien plants over the last two centuries. Proc Natl Acad Sci USA 108:439–440

    PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Global Change Biol 18:1725–1737

    Google Scholar 

  • Quiroz CL, Cavieres LA, Pauchard A (2011) Assessing the importance of disturbance, site conditions, and the biotic barrier for dandelion invasion in an Alpine habitat. Biol Invas 13:2889–2899

    Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. In R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Radford IJ (2013) Fluctuating resources, disturbance and plant strategies: diverse mechanisms underlying plant invasions. J Arid Land 5:284–297

    Google Scholar 

  • Rostański K, Sowa R (1986–1987) Alfabetyczny wykaz efemerofitów Polski. Fragm Florist Geobot 21–22:151–205

    Google Scholar 

  • Schoolmaster DR, Snyder RE (2007) Invasibility in a spatiotemporally fluctuating environment is determined by the periodicity of fluctuations and resident turnover rates. Proc Roy Soc Ser B, Biol Sci 274:1429–1435

    Google Scholar 

  • Seabloom EW, Borer ET, Boucher VL, Burton RS, Cottingham KL, Goldwasser L, Gram WK, Kendall BE, Micheli F (2003) Competition, seed limitation, disturbance, and reestablishment of California native annual forbs. Ecol Applic 13:575–592

    Google Scholar 

  • Seipel T, Kueffer C, Rew LJ, Daehler CC, Pauchard A, Naylor BJ, Alexander JM, Edwards PJ, Parks CG, Arevalo JR, Cavieres LA, Dietz H, Jakobs G, McDougall K, Otto R, Walsh N (2012) Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Global Ecol Biogeogr 21:236–246

    Google Scholar 

  • Selva N, Kreft S, Kati V, Schluck M, Jonsson BG, Mihok B, Okarma H, Ibisch PL (2011) Roadless and Low-Traffic Areas as Conservation Targets in Europe. Environm Managem 48:865–877

    Google Scholar 

  • Šibíková I, Šibík J, Hájek M, Kliment J (2010) The distribution of arctic-alpine elements within high-altitude vegetation of the Western Carpathians in relation to environmental factors, life forms and phytogeography. Phytocoenologia 40:189–203

    Google Scholar 

  • Simonová D, Lososová Z (2008) Which factors determine plant invasions in man-made habitats in the Czech Republic? Perspect Pl Ecol 10:89–100

    Google Scholar 

  • Šmarda J (1975) Život rastlín v horách. Zborn TANAP 17:21–44

    Google Scholar 

  • Speziale KL, Ezcurra C (2011) Patterns of alien plant invasions in northwestern Patagonia, Argentina. J Arid Environm 75:890–897

    Google Scholar 

  • Taylor K, Brummer T, Taper ML, Wing A, Rew LJ (2012) Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Diversity & Distrib 18:942–951

    Google Scholar 

  • Šmilauer P, LepŠ J (2014) Multivariate Analysis of Ecological Data using Canoco 5. Second Edition. Cambridge University Press, Cambridge

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biol 14:18–30

    Google Scholar 

  • Tyser RW, Worley CA (1992) Alien flora in grasslands adjacent to road and trail corridors in Glacier National-Park, Montana (USA). Conservation Biol 6:253–262

    Google Scholar 

  • Vilà M, Pino J, Font X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:35–42

    Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Letters 14:702–708

    Google Scholar 

  • von der Lippe M, Kowarik I (2007). Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conservation Biol 21:986–996

    Google Scholar 

  • von der Lippe M, Bullock JM, Kowarik I, Knopp T, Wichmann M (2013) Human-mediated dispersal of seeds by the airflow of vehicles. PLOS ONE 8:e52733

    PubMed  PubMed Central  Google Scholar 

  • Walker S, Wilson JB, Lee WG (2005) Does fluctuating resource availability increase invasibility? Evidence from field experiments in New Zealand short tussock grassland. Biol Invas 7:195–211

    Google Scholar 

  • Walter J, Essl F, Englisch T, Kiehn M (2005) Neophytes in Austria: habitat preferences and ecological effects. Neobiota 6:13–25

    Google Scholar 

  • Who E (1998) Invasion, dispersal and ecology of the South African neophyte Senecio inaequidens in The Netherlands: from wool alien to railway and road alien. Acta Bot Neerl 47:131–151

    Google Scholar 

  • WMO No 100 (2011) Guide to climatological practices. 3rd Edition, World Meteorological Organization, Geneva

    Google Scholar 

  • Zając A (1979) Pochodzenie archeofytów występujących w Polsce. Rozpr Habilit 29:1–209

    Google Scholar 

  • Zając A (1987a) Badania nad pochodzeniem archeofitów występujących w Polsce. Część III. Taksony pochodzenia irano-turańskiego, eurosyberyjsko-irano-turańskiego i śródziemnomorsko-irano-turańskiego. Zesz Nauk Uniw Jagiellon Prace Bot 15:93–129

    Google Scholar 

  • Zając A (1987b) Badania nad pochodzeniem archeofitów występującychw Polsce. Część II. Taksony pochodzenia śródziemnomorskiego i atlantycko-śródziemnomorskiego. Zesz Nauk Uniw Jagiellon Prace Bot 14:7–49

    Google Scholar 

  • Zając A (1988) Badania nad pochodzeniem archeofitów występujących w Polsce. Część IV. Taksony pochodzenia pontyjsko-pannońskiego, śródziemnomorsko-południowo-azjatyckiego, południowoazjatyckiego i środkowoeuropejskiego. Archaeophyta antropogena, Archaeophyta resistentia. Archeofity o nieznanym pochodzeniu. Zesz Nauk Uniw Jagiellon Prace Bot 17:23–51

    Google Scholar 

  • Zając EU, Zając A (1975) Lista archeofytów występujących w Polsce. Zesz Nauk Uniw Jagiellon Prace Bot 3:7–16

    Google Scholar 

  • Zając A, Zając M, Tokarska-Guzik B (1998) Kenophytes in the flora of Poland: list, status and origin. In Faliński JB, Adamowski W, Jackowiak B (eds) Synanthropization of plant cover in new Polish research. Phytocoenosis 10 (N. S.), Supplementum Cartographiae Geobotanicae 9, Warszawa-Bialowieża, 107–116

  • Zwaenepoel A, Roovers P, Hermy M (2006) Motor vehicles as vectors of plant species from road verges in a suburban environment. Basic Appl Ecol 7:83–93

    Google Scholar 

Download references

Acknowledgements

We would like to thank Petr Pyšek, Milan Chytrý, Aníbal Pauchard, Jozef Šibík and Radim Hédl for the fruitful discussions on the concept of our research, Marek Svitok, Mária Šibíková, Ladislav Pekárik and Iveta Škodová for the discussions on the data analyses, anonymous proof-reader for language corrections and anonymous reviewers for their valuable suggestions. We would like to thank the administration at TANAP for permission to conduct research in the national park and the State Forests of TANAP and other local owners for enabling us to work on their property. This research was funded by VEGA 2/0098/11, VEGA 2/0121/09 and VEGA 2/0090/12. This study is also the result of the implementation of the project ITMS 6240120014 (The Centre of Excellence for Biodiversity and Land-Use Conservation), supported by the Research & Development Operational Program funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Medvecká.

Electronic Supplementary Material

ESM 1

(PDF 97.1 kb)

ESM 2

(PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvecká, J., Zaliberová, M., Májeková, J. et al. Role of infrastructure and other environmental factors affecting the distribution of alien plants in the Tatra Mts. Folia Geobot 53, 349–364 (2018). https://doi.org/10.1007/s12224-018-9319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-018-9319-2

Keywords

Navigation