Skip to main content
Log in

An optimum forceful generation scheduling and unit commitment of thermal power system using sine cosine algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Conventional thermal power system-based units and its participation schedule known as unit commitment problem (UCP) is a significant and stimulating undertaking of allocating generated power among the dedicated units subject to numerous restrictions above a scheduled time prospect to obtain the slightest generation cost. This problem becomes further more complex by increasing the size of the power system. Since unit commitment problem is link optimization problem as it has both binary and continuous variable that is why it is most challenging problem to solve. In this paper, a recently invented optimizer sine–cosine is used to solve unit commitment problem. Sine cosine algorithm (SCA) is an innovative population centered optimization algorithm that has been used for solving the unit commitment optimization problems bounded by some constraints centered on the concept of a mathematical model of the sine and cosine functions. This paper offers the solution of unit commitment optimization problems of the electric power system by using the SCA, as UCP is linked optimization as it has both binary and continuous variables, the strategy adopted to tackle both variables is different. In this paper, proposed sine cosine algorithm searches allocation of generators (units that participate in generation to take upload) and once units are decided, allocation of generations (economic load dispatch) is done by mixed integer quadratic programming. The feasibility and efficacy of operation of SCA algorithm are verified for small- and medium-power systems, in which results for 4 unit, 5 unit, 6 unit, 7 unit, 10 units, 19 unit, 20 unit and 40 units are evaluated. The 10 generating units are evaluated with 5% and 10% spinning reserve. The results obviously show that the suggested method gives the superior type of solutions as compared to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1: a
Fig. 2
Fig. 3: a
Fig. 4: a
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sheble GB, Fahd GN (1994) Unit commitment literature synopsis. IEEE Trans Power Syst 9(1):128–135

    Article  Google Scholar 

  2. Baldwin CJ, Dale KM, Dittrich RF (1959) A study of the economic shutdown of generating units in daily dispatch. Trans Am Inst Electr Eng Part III Power Appar Syst 78(4):1272–1282

    Google Scholar 

  3. Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley

  4. Dhillon JS, Kothari DP (2010) Power system optimization. Preintce Hall India Priv. Ltd., New Delhi

    Google Scholar 

  5. Wood AJ, Wollenberg BF, Sheblé GB (2013) Power generation, operation, and control. Wiley

  6. Delarue E, Cattrysse D, D’haeseleer W (2013) Enhanced priority list unit commitment method for power systems with a high share of renewables. Electr Power Syst Res 105:115–123

    Article  Google Scholar 

  7. Quan R, Jian J, Yang L (2015) Electrical power and energy systems an improved priority list and neighborhood search method for unit commitment. Int J Electr Power Energy Syst 67:278–285

    Article  Google Scholar 

  8. A. N. Intelligent, D. Programming, F. O. R. Unit, and C. Application (1991)An intelligent dynamic programming, vol 6(3), pp 1203–1209

  9. Pang CK, Sheble GB, Albuyeh F (1981) Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments. IEEE Trans Power Appar Syst 100(3):1212–1218

    Article  Google Scholar 

  10. Padhy NP (2001) Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms. Int J Electr Power Energy Syst 23(8):827–836

    Article  Google Scholar 

  11. Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12):1861–1871

    Article  Google Scholar 

  12. Beltran C, Heredia FJ (2002) Unit commitment by augmented Lagrangian relaxation. Testing 112(2):295–314

    MATH  Google Scholar 

  13. Lee FN (1988) Short-term thermal unit commitment-a new method. IEEE Trans Power Syst 3(2):421–428

    Article  Google Scholar 

  14. Tseng C-L, Li CA, Oren SS (2000) Solving the unit commitment problem by a unit decommitment method. J Optim Theory Appl 105(3):707–730

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen AI, Yoshimura M (1983) A branch-and-bound algorithm for unit commitment. IEEE Trans Power Appar Syst 2:444–451

    Article  Google Scholar 

  16. Dillon TS (1978) Reserve determination F. i (Pit), no. 6, pp 2154–2166

  17. Niu P, Niu S, Liu N, Chang L (2019) The defect of the Grey Wolf optimization algorithm and its verification method. Knowl Based Syst 171:37–43

    Article  Google Scholar 

  18. Ji B, Yuan X, Li X, Huang Y, Li W (2014) Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration. Energy Convers Manag 87:589–598

    Article  Google Scholar 

  19. Gjorgiev B, Kančev D, Čepin M, Volkanovski A (2015) Multi-objective unit commitment with introduction of a methodology for probabilistic assessment of generating capacities availability. Eng Appl Artif Intell 37:236–249

    Article  Google Scholar 

  20. Singh SN, Shukla A (2016) Multi-objective unit commitment using search space-based crazy particle swarm optimisation and normal boundary intersection technique. IET Gener Transm Distrib 10(5):1222–1231

    Article  Google Scholar 

  21. Casolino GM, Liuzzi G, Losi A (2015) Combined cycle unit commitment in a changing electricity market scenario. Int J Electr Power Energy Syst 73:114–123

    Article  Google Scholar 

  22. Quan H, Srinivasan D, Khambadkone AM, Khosravi A (2015) A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources. Appl Energy 152:71–82

    Article  Google Scholar 

  23. Zhang N, Hu Z, Han X, Zhang J, Zhou Y (2015) A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power. Int J Electr Power Energy Syst 65:201–209

    Article  Google Scholar 

  24. Singhal PK, Naresh R, Sharma V (2015) A modified binary artificial bee colony algorithm for ramp rate constrained unit commitment problem. Int Transac Electr Energy Syst 25(12):3472–3491

    Article  Google Scholar 

  25. Todosijević R, Mladenović M, Hanafi S, Crévits I (2012) VNS based heuristic for solving the unit commitment problem. Electron Notes Discret Math 39:153–160

    Article  MATH  Google Scholar 

  26. Kamboj VK, Bath SK, Dhillon JS (2016) Implementation of hybrid harmony/random search algorithm considering ensemble and pitch violation for unit commitment problem. Int J Electr Power Energy Syst 77:228–249

    Article  Google Scholar 

  27. Saravanan B, Kumar C, Kothari DP (2016) A solution to unit commitment problem using fire works algorithm. Int J Electr Power Energy Syst 77:221–227

    Article  Google Scholar 

  28. Shukla A, Singh SN (2016) Advanced three-stage pseudo-inspired weight-improved crazy particle swarm optimization for unit commitment problem. Energy 96:23–36

    Article  Google Scholar 

  29. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  30. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  31. J. M. Anita and I. J. Raglend, “Solution of emission constrained Unit Commitment problem using Shuffled Frog Leaping Algorithm,” in Circuits, Power and Computing Technologies (ICCPCT), 2013 International Conference on, 2013, pp. 93–98

  32. Rajan CCA, Mohan MR, Manivannan K (2003) Neural-based tabu search method for solving unit commitment problem. IEE Proc Gener Trans Distrib 150(4):469–474

    Article  Google Scholar 

  33. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  34. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232

    Article  MATH  Google Scholar 

  35. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82

    Article  Google Scholar 

  36. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  37. Cuevas E, Echavarra A, Ramrez-Ortegn MA (2014) An optimization algorithm in- spired by the states of matter that improves the balance between exploration and exploitation. Appl Intel 40:256

    Article  Google Scholar 

  38. Cuevas E, Echavarra A, Zaldvar D, Prez-Cisneros MA (2012) Novel evolutionary algorithm inspired by the states of matter for template matching. Expert Syst Appl 40:635973

    Google Scholar 

  39. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 65–74

    Chapter  Google Scholar 

  40. Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and naturalcomputation. Springer, Berlin, Heidelberg

  41. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE

  42. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. arXiv:1003.1409

  43. Yang XF (2010) Algorithm, Levy flights and global optimization. In: Research and development in intelligent systems, vol XXVI. Springer, pp 209–218

  44. John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  45. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  46. Mirjalili S (2015) Knowledge-based systems moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  47. Cuevas E, Echavarra A, Ma R-O (2014) An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Appl Intell 40:256

    Article  Google Scholar 

  48. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  49. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  Google Scholar 

  50. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. IEEE Int Conf Syst Man Cybern Comput Cybern Simul 5:4104–4108

    Google Scholar 

  51. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9(3):727–745

    Article  MathSciNet  MATH  Google Scholar 

  52. Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multi objective optimization. Eng Optim 46:1222–1237

    Article  MathSciNet  Google Scholar 

  53. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  54. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  55. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  56. Tokoro KI, Masuda Y, Nishino H (2008) Soving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In: 2008 SICE Annual Conference, pp 3474–3478

  57. Damousis IG, Bakirtzis AG, Dokopoulos PS (2004) A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Trans Power Syst 19(2):1165–1172

    Article  Google Scholar 

  58. Ganguly D, Sarkar V, Pal J (2004) A new genetic approach for solving the unit commitment problem. In: International conference on power system technology-POWERCON 2004, pp 542–547

  59. Lee S, Park H, Jeon M (2007) Binary particle swarm optimization with bit change mutation. IEICE Trans Fundam Electron 90:2253–2256

    Article  Google Scholar 

  60. Ting TO, Rao MVC, Loo CK, Ngu SS (2003) Solving unit commitment problem using hybrid particle swarm optimization. J Heuristics 9:507–520

    Article  MATH  Google Scholar 

  61. Wang B, Li Y, Watada J (2011) Re-scheduling the unit commitment problem in fuzzy environment. In: 2011 IEEE international conference on fuzzy systems

  62. Eldin AS, El-Sayed MAH, Youssef HKM (2008) A two-stage genetic based technique for the unit commitment optimization problem. In: 2008 12th international middle-east power system conference. IEEE

  63. Ting TO, Rao MVC, Loo CK (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418

    Article  Google Scholar 

  64. Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76

    Article  Google Scholar 

  65. Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92

    Article  Google Scholar 

  66. Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. Power Eng Soc Gen Meet IEEE 3:2752–2759

    Google Scholar 

  67. Senjyu T, Miyagi T, Saber AY, Urasaki N, Funabashi T (2006) Emerging solution of large-scale unit commitment problem by stochastic priority list. Electr Power Syst Res 76(5):283–292

    Article  Google Scholar 

  68. Cheng C, Liu C, Liu C (2000) Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans Power Syst 15(2):707–714

    Article  Google Scholar 

  69. Juste KA, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459

    Article  Google Scholar 

  70. Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electr Power Energy Syst 28(7):482–490

    Article  Google Scholar 

  71. Sum-im T, Ongsakul W (2003) Ant colony search algorithm for unit commitment. IEEE Int Conf Ind Technol 1:72–77

    Google Scholar 

  72. Chusanapiputt S, Nualhong D, Jantarang S, Phoomvuthisarn S (2008) A solution to unit commitment problem using hybrid ant system/priority list method. In: PECon 2008–IEEE 2nd international power energy conference, no. PECon 08, pp 1183–1188

  73. Khanmohammadi S, Amiri M, Haque M (2010) A new three-stage method solving unit commitment problem energy, pp 3072–3080

  74. Cheng CP, Liu CW, Liu CC (2000) Unit commitment by annealing-genetic algorithms. Electr Power Energy Syst 24:149–158

    Article  Google Scholar 

  75. Jeong YW, Lee WN, Kim HH, Park JB, Shin JR (2009) Thermal unit commitment using binary differential evolution. J Electr Eng Technol 4(3):323–329

    Article  Google Scholar 

  76. Zhe W, Yi-xin YU, Hong-peng Z (2004) Social evolutionary programming based unit commitment. In: Proceedings of the CSEE, pp 24–28

  77. Tingfan Y, Ting TO (2008) Methodological priority list for unit commitment problem. In: Proceedings of the international conference on computer science and software engineering (CSSE 2008), pp 176–179

  78. Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055

    Article  Google Scholar 

  79. Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2002) A unit commitment problem by using genetic algorithm based on unit characteristic classification. IEEE Power Eng Soc Winter Meet 1:58–63

    Article  Google Scholar 

  80. Ongsakul W, Petcharaks N (2004) Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans Power Syst 19(1):620–628

    Article  Google Scholar 

  81. Fei L, Jinghua L (2009) A solution to the unit commitment problem based on local search method, in 09, Guilin, Guangxi, vol 2, pp. 51–56

  82. Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum-inspired binary PSO for thermal unit commitment problems. In: Proceedings of the 15th international conference on intelligent system applications to power systems, pp 1–6

  83. Chandram K, Subrahmanyam N, Sydulu M (2011) Unit commitment by improved pre-prepared power demand table and Muller method. Int J Electr Power Energy Syst 33(1):106–114

    Article  Google Scholar 

  84. Ouyang Z, Shahidehpour SM (1992) A multi-stage intelligent system for unit commitment. IEEE Trans Power Syst 7(2):639–646

    Article  Google Scholar 

  85. Chakraborty S, Senjyu T, Yona A, Funabashi T (2011) Fuzzy quantum computation based thermal unit commitment strategy with solar battery system injection. In: IEEE international conference in fuzzy systems, pp 2606–2613

  86. Chung CY, Yu H, Wong KP (2011) An advanced quantum-inspired evolutionary algorithm for unit commitment. IEEE Trans Power Syst 26(2):847–854

    Article  Google Scholar 

  87. Sadati N, Hajian M, Zamani M (2007) Unit commitment using particle swarm-based-simulated annealing optimization approach. In: Proceedings of the 2007 IEEE swarm intelligence symposium SIS 2007, no. Sis, pp 297–302

  88. Roy PK (2013) Solution of unit commitment problem using gravitational search algorithm. Electr Power Energy Syst 53:85–94

    Article  Google Scholar 

  89. Najafi S (2011) A new heuristic algorithm for unit commitment problem. Energy Proc 14:2011

    Google Scholar 

  90. Afkousi-Paqaleh M, Rashidinejad M (2010) An implementation of harmony search algorithm to unit commitment problem. Electr Eng 10(1007):10–202

    Google Scholar 

  91. Pappala VS, Member S, Erlich I, Member S (2008) A New approach for solving the unit commitment problem by adaptive particle swarm optimization, vol 3, pp 1–6

  92. Xiong WXW, Li MLM, Cheng YCY (2008) An improved particle swarm optimization algorithm for unit commitment. Int Conf Intell Comput Technol Autom 1(4):21–25

    Google Scholar 

  93. Victoire T (2004) Hybrid PSO–SQP for economic dispatch with valve-point effect. Elsevier, Amsterdam

    Book  Google Scholar 

  94. Khanmohammadi S, Amiri M, Haque MT (2010) A new three-stage method for solving unit commitment problem. Energy 35(7):3072–3080

    Article  Google Scholar 

  95. Sheblé GB, Maifeld TT, Brittig K, Fahd G, Fukurozaki-Coppinger S (1996) Unit commitment by genetic algorithm with penalty methods and a comparison of Lagrangian search and genetic algorithm-economic dispatch example. Int J Electr Power Energy Syst 18(6):339–346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Bhadoria.

Ethics declarations

Conflict of interest

This research has been purely carried by the corresponding author. Hence there exists no claim for conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 19, 20, 21 and Figs. 11, 12 and 13

Table 19 Uni-modal benchmark functions
Table 20 Multi-modal benchmark functions
Table 21 Fixed dimensions benchmark functions
Fig. 11
figure 11

3D view of unimodal Benchmark problem

Fig. 12
figure 12

3D view of multi-modal benchmark problem

Fig. 13
figure 13

3D view of fixed dimension modal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadoria, A., Marwaha, S. & Kamboj, V.K. An optimum forceful generation scheduling and unit commitment of thermal power system using sine cosine algorithm. Neural Comput & Applic 32, 2785–2814 (2020). https://doi.org/10.1007/s00521-019-04598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04598-8

Keywords

Navigation