Skip to main content
Log in

Tensile behaviors of thermal aged HTPB propellant at low temperatures under dynamic loading

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

With the purpose of further investigating the influence of aging on the tensile behaviors of hydroxyl-terminated polybutadiene (HTPB) propellant at low temperatures under dynamic loading, uniaxial tensile stress responses of thermal accelerated aged propellant samples at different temperatures (223–298 K) and strain rates (\(0.40\mbox{--}42.86~\mbox{s}^{-1}\)) were obtained through the use of a new INSTRON testing machine. And scanning electron microscope (SEM) was employed to analyze the microscopic damage of HTPB propellant under the test conditions. Test results indicate that aging can significantly affect the characteristics of the stress-strain curves, mechanical properties and fracture mechanisms of HTPB propellant at low temperatures under dynamic loading. There are three regions in the tensile stress-strain curves of aged propellant when deforming at lower temperatures and the highest strain rate, however, there are five ones for unaged propellant. At lower temperatures and higher strain rates, the strain at maximum tensile stress of the propellant decreases more obviously after aging. Moreover, the variation of mechanical parameters for HTPB propellant with aging time are highly complex due to the occurrence of oxidative cross-linking during aging and the distinct changes of the fracture mechanisms. These variation were reasonably well described with linear model and the improved exponential model in this investigation. The fracture mechanism of aged propellant can change from dewetting, matrix tearing and AP particle fracture to only AP particle fracture with increasing strain rate for the entire test temperature range, and the strain rate for this transition is all at \(4.00\mbox{--}14.29~\mbox{s}^{-1}\). In addition, the microscopic damage of HTPB propellant becomes more severe with the thermal aging time rising, however, this effect is weaker at higher strain rates after long-time thermal aging. Finally, the master curves of typical mechanical parameters for aged HTPB propellant were constructed according to the time-temperature superposition principle (TTSP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen, P.C., Bruno, T.J.: Thermal decomposition kinetics of RP-1 rocket propellant. Ind. Eng. Chem. Res. 44(6), 1670–1676 (2005)

    Article  Google Scholar 

  • Bohn, M.A., Volk, F.: Aging behavior of propellants investigated by heat generation, stabilizer consumption, and molar mass degradation. Propellants Explos. Pyrotech. 17(4), 171–178 (1992)

    Article  Google Scholar 

  • Bunyan, P., Cunliffe, A.V., Davis, A., Kirby, F.A.: The degradation and stabilisation of solid rocket propellants. Polym. Degrad. Stab. 40(2), 239–250 (1993)

    Article  Google Scholar 

  • Celina, M., Minier, L., Assink, R.: Development and application of tools to characterize the oxidative degradation of AP/HTPB/al propellants in a propellant reliability study. Thermochim. Acta 384(1–2), 343–349 (2002)

    Article  Google Scholar 

  • Cerri, S., Bohn, M.A., Menke, K., Galfetti, L.: Ageing behaviour of HTPB based rocket propellant formulations. Central Eur. J. Energ. Mater. 6(2), 149–165 (2009)

    Google Scholar 

  • Cerri, S., Bohn, M.A., Menke, K., Menke, K., Galfetti, L.: Aging of HTPB/Al/AP rocket propellant formulations investigated by DMA measurements. Propellants Explos. Pyrotech. 38(2), 190–198 (2013)

    Article  Google Scholar 

  • Chu, H.T., Chou, J.H.: Effect of cooling load on the safety factor of propellant grains. J. Propuls. Power 29(1), 27–33 (2013)

    Article  Google Scholar 

  • de la Fuente, J.L.: An analysis of the thermal aging behaviour in high-performance energetic composites through the glass transition temperature. Polym. Degrad. Stab. 94(4), 664–669 (2009)

    Article  Google Scholar 

  • de la Fuente, J.L., Rodrı´guez, O.: Dynamic mechanical study on the thermal aging of a hydroxyl-terminated polybutadiene-based energetic composite. J. Appl. Polym. Sci. 87(14), 2397–2405 (2015)

    Article  Google Scholar 

  • Deng, B., Tang, G., Shen, Z.: Structural analysis of solid rocket motor grain with aging and damage effects. J. Spacecr. Rockets 50(2), 331–339 (2015)

    Article  Google Scholar 

  • Edidin, A.A., Jewett, C.W., Kalinowski, A., Kwarteng, K., Kurtz, S.M.: Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials 21(14), 1451–1460 (2000)

    Article  Google Scholar 

  • Gligorijević, N., Živković, S., Subotić, S., Rodić, V., Gligorijević, I.: Effect of cumulative damage on rocket motor service life. J. Energ. Mater. 33(4), 229–259 (2015)

    Article  Google Scholar 

  • Gligorijević, N.I., Rodić, V.Ž., Živković, S.Ž., Pavković, B.M., Nikolić, M.M., Kozomara, S.M., Subotić, S.D.: Mechanical characterization of composite solid rocket propellant based on hydroxy-terminated polybutadiene. Hem. Ind. 70(5), 581–594 (2016)

    Article  Google Scholar 

  • Goncalves, R.F.B., Silva, R.P., Rocco, J.A.F.F., Iha, K.: Thermal decomposition kinetics of aged solid propellant based on ammonium perchlorate-AP/HTPB binder. AIAA 2008-4969 (2008)

  • Hocaoğlu, Ö., Pekel, F., Özkar, S.: Aging of HTPB/AP-based composite solid propellants, depending on the NCO/OH and Triol/Diol ratios. J. Appl. Polym. Sci. 79(6), 959–964 (2001)

    Article  Google Scholar 

  • Husband, D.M.: Use of dynamic mechanical measurements to determine the aging behavior of solid propellant. Propellants Explos. Pyrotech. 17(4), 196–201 (1992)

    Article  Google Scholar 

  • Jalocha, D., Constantinescu, A., Neviere, R.: Prestrained biaxial DMA investigation of viscoelastic nonlinearities in highly filled elastomers. Polym. Test. 42, 37–44 (2015)

    Article  Google Scholar 

  • Jeremic, R.: Some aspects of time-temperature superposition principle applied for predicting mechanical properties of solid rocket propellants. Propellants Explos. Pyrotech. 24(4), 221–223 (1999)

    Article  Google Scholar 

  • Jiang, S.P., Rui, X.T., Hong, J., Wang, G.P., Rong, B., Wang, Y.: Numerical simulation of impact breakage of gun propellant charge. Granul. Matter 13, 611–622 (2011)

    Article  Google Scholar 

  • Judge, M.D.: An investigation of composite propellant accelerated ageing mechanisms and kinetics. Propellants Explos. Pyrotech. 28(3), 114–119 (2003)

    Article  Google Scholar 

  • Kadiresh, P.N., Sridhar, B.T.N.: Experimental evaluation and simulation on aging characteristics of aluminised AP-HTPB composite solid propellant. Mater. Sci. Technol. 24(4), 406–412 (2008)

    Article  Google Scholar 

  • Kadiresh, P.N., Sridhar, B.T.N.: Experimental study on ballistic behaviour of an aluminised AP/HTPB propellant during accelerated aging. J. Therm. Anal. Calorim. 100(1), 331–335 (2010)

    Article  Google Scholar 

  • Kishore, K., Paiverneker, V.R., Prasad, G.: Effect of storage temperatures on the mechanical properties of the composite solid propellants. Combust. Sci. Technol. 19, 107–118 (1979)

    Article  Google Scholar 

  • Kivity, M., Hartman, G., Achlama, A.M.: Aging of HTPB Propellant. AIAA 2005-3802 (2005)

  • Layton, L.H.: Chemical structural aging studies on HTPB propellant. ADA010731 (1975)

  • Lloyd, D.K.: Long-Range Service Life Analysis (LRSLA) estimating procedure. J. Spacecr. Rockets 14(6), 351–357 (1977)

    Article  Google Scholar 

  • Reeling Brouwer, G., Keizers, H.: Aging in composite propellant grains. AIAA 2004-4058 (2004)

  • Reeling Brouwer, G., Weterings, F.P., Keizers, H.: Evaluation of ageing in composite propellant grains: Part 2. AIAA 2005-3803 (2005)

  • Rocco, J., Lima, J., Frutuoso, A., Iha, K., Ionashiro, M., Matos, J., Suárez-Iha, M.: Thermal degradation of a composite solid propellant examined by DSC. J. Therm. Anal. Calorim. 75(2), 551–557 (2004)

    Article  Google Scholar 

  • Shekhar, H.: Studies on stress-strain curves of aged composite solid rocket propellants. Def. Sci. J. 62(2), 90–94 (2012)

    Article  Google Scholar 

  • Trache, D., Khimeche, K.: Study on the influence of ageing on chemical and mechanical properties of N,N’-dimethyl-N,N’-diphenylcarbamide stabilized propellants. J. Therm. Anal. Calorim. 111(1), 305–312 (2013)

    Article  Google Scholar 

  • Villar, L.D., Cicaglioni, T., Diniz, M.F., Takahashi, M.F.K., Rezende, L.C.: Thermal aging of HTPB/IPDI-based polyurethane as a function of NCO/OH ratio. Mater. Res. 14(3), 372–375 (2011)

    Article  Google Scholar 

  • Wang, Z., Qiang, H., Wang, G., Huang, Q.: Tensile mechanical properties and constitutive model for HTPB propellant at low temperature and high strain rate. J. Appl. Polym. Sci. 132(24) (2015a)

  • Wang, Z., Qiang, H., Wang, G.: Experimental investigation on high strain rate tensile behaviors of HTPB propellant at low temperatures. Propellants Explos. Pyrotech. 40(6), 814–820 (2015b)

    Article  Google Scholar 

  • Wang, Z., Qiang, H., Wang, G., Wang, T.: A new test method to obtain biaxial tensile behaviors of solid propellant at high strain rates. Iran. Polym. J. 25(6), 15–524 (2016a)

    Article  MathSciNet  Google Scholar 

  • Wang, Z., Qiang, H., Wang, G., Zhu, Z.: Effects of low temperature and high strain rate on the tensile behaviors of high-performance energetic composite. In: MATEC Web of Conferences, vol. 67 (2016b)

    Google Scholar 

  • Wang, Z., Qiang, H., Wang, T., Wang, G., Hou, X.: A thermovisco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates. Mech. Time-Depend. Mater. 22(3), 291–314 (2018)

    Article  Google Scholar 

  • Yıldırım, H.C., Özüpek, Ş.: Structural assessment of a solid propellant rocket motor: effects of aging and damage. Aerosp. Sci. Technol. 15(8), 635–641 (2011)

    Article  Google Scholar 

  • Zhao, Y.J., Zhang, W., Zhang, X.G., Zhu, H., Wang, C.H., Fang, L.J.: Aging property and storage life prediction of NEPE propellant. Theory Pract. Energ. Mater. 7(1), 163–166 (2007)

    Google Scholar 

  • Zou, X., Uesaka, T., Gurnagul, N.: Prediction of paper permanence by accelerated aging comparison of the predictions with natural aging results. Cellulose 3(1), 269–279 (1996)

    Article  Google Scholar 

  • Zhou, D., Liu, X., Sui, X., Wei, Z., Wang, N.: Effect of pre-strain during ageing on the maximum elongation of composite solid propellants and its modelling. Polym. Test. 50, 200–207 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National 973 Program in China (No. 61338) and the National Funds in China (Nos. 11772352, 61407200203 and 51328050101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhejun Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Qiang, H., Wang, T. et al. Tensile behaviors of thermal aged HTPB propellant at low temperatures under dynamic loading. Mech Time-Depend Mater 24, 141–159 (2020). https://doi.org/10.1007/s11043-019-09413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-019-09413-4

Keywords

Navigation