Skip to main content

Advertisement

Log in

Genetic variation of Gentianella campestris ssp. campestris in the Northern Alps: how important are population size and isolation?

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

In this study, we analysed the impact of population size and isolation on the genetic variation of the short-lived alpine plant species Gentianella campestris ssp. campestris from two study regions (Allgäu and Karwendel) in the Northern calcareous Alps in Germany. We determined the size and isolation of the study populations and analysed genetic variation using amplified fragment length polymorphisms. Genetic variation of G. campestris ssp. campestris differed significantly between the two study regions. Genetic variation did not depend on population size. However, the level of genetic variation within populations was about three times lower in the Karwendel, where the species is much more isolated than in the Allgäu. Conversely, genetic variation among populations was much stronger in the Karwendel than in the Allgäu. Our results support the observation that the level of genetic variation within populations of alpine plant species may not only be affected by population size, but also by population isolation. Depending on the distance among populations, gene flow by exchange of pollen and seeds triggers the influx of genetic variation, thereby sometimes superimposing the effects of population size. Our results suggest that for seed collections in conservation projects, not only population size, but also isolation should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aeschimann D, Lauber K, Moser DM, Theurillat JP (2004) Flora alpina, vol 2. Haupt, Bern

    Google Scholar 

  • Beatty GE, McEvoy PM, Sweeney O, Provan J (2008) Range-edge effects promote clonal growth in peripheral populations of the one-sided wintergreen Orthilia secunda. Divers Distrib 14:546–555

    Article  Google Scholar 

  • BfN (2018) FloraWeb—Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands. http://www.floraweb.de/. Accessed 15 Dec 2017

  • Bonin A, Belleman E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Brütting C, Meyer S, Kühne P, Hensen I, Wesche K (2012) Spatial genetic structure and low diversity of the rare arable plant Bupleurum rotundifolium L. indicate fragmentation in Central Europe. Agric Ecosyst Environ 161:70–77

    Article  Google Scholar 

  • Busch V, Reisch C (2016) Population size and land use affect the genetic variation and performance of the endangered plant species Dianthus seguieri ssp. glaber. Conserv Genet 17:425–436. https://doi.org/10.1007/s10592-015-0794-1

    Article  Google Scholar 

  • Bylebyl K, Poschlod P, Reisch C (2008) Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe. Mol Ecol 17:3379–3388

    Article  PubMed  Google Scholar 

  • Cruzan M (2001) Population size and fragmentation thresholds for the maintenance of genetic diversity in the herbaceaous endemic Scutellaria montana (Lamiaceae). Evolution 55:1569–1580

    Article  PubMed  CAS  Google Scholar 

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Durka W (1999) Genetic diversity in peripheral and subcentral populations of Corrigiola litoralis L. (Illecebraceae). Heredity 83:476–484

    Article  PubMed  CAS  Google Scholar 

  • Durka W et al (2017) Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. J Appl Ecol 54:116–126

    Article  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Eckert CG, Samis E, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Eckstein RL, O’Neill RA, Danihelka J, Otte A, Köhler W (2006) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation studie. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Evans MEK, Dolan RW, Menges ES, Gordon D (2000) Genetic diversity and reproductive biology in Warea carteri (Brassicaceae), a narrowly endemic Florida scrub annual. Am J Bot 87:372–381

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am J Bot 85:811–819

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gabel A-R, Sattler J, Reisch C (2017) Genetic variation and performance of the alpine plant species Dianthus callizonus differ in two elevational zones of the. Carpathians Alpine Bot 127:65–74

    Article  Google Scholar 

  • García D, Zamora R, Gómez JM, Jordano P, Hódar JA (2000) Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J Ecol 88:436–446

    Article  Google Scholar 

  • Greene SL, Kisha TJ, Yu L-X, Parra-Quijano M (2014) Conserving plants in gene banks and nature: investigating complementarity with Trifolium thompsonii morton. PLoS One. https://doi.org/10.1371/journal.pone.0105145

    Article  PubMed  PubMed Central  Google Scholar 

  • Greimler J, Dobes C (2000) High genetic differentiation in relict lowland populations of Gentianella austriaca (A and J Kern) Holub (Gentianaceae). Plant Biol 2:628–637

    Article  Google Scholar 

  • Hamilton JA, Eckert CG (2007) Population genetic consequences of geographic disjunction: a prairie plant isolated on Great Lakes alvars. Mol Ecol 16:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Heelemann S, Krug CB, Esler KJ, Poschlod P, Reisch C (2014) Low impact of fragmentation on genetic variation within and between remnant populations of the typical renosterveld species Nemesia barbata in South Africa. Biochem Syst Ecol 54:59–64

    Article  CAS  Google Scholar 

  • Hensen I, Kilian C, Wagner V, Durka W, Pusch J, Wesche K (2010) Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. in Central Europe. Plant Biol 12:526–536

    Article  PubMed  CAS  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Huhta A-P, Lennartsson T, Tuomi J, Rautio P, Laine K (2000) Tolerance of Gentianella campestris in relation to damage intensity: an interplay between apical dominance and herbivory. Evol Ecol 14:373–392

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. https://doi.org/10.1093/molbev/msj030

    Article  PubMed  CAS  Google Scholar 

  • Jacquemyn H, Vandepitte K, Roldán-Ruiz I, Honnay O (2009) Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization. Ann Bot 103:777–783

    Article  PubMed  CAS  Google Scholar 

  • Jump AS, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. N Phytol 160:349–358

    Article  Google Scholar 

  • Kaulfuß F, Reisch C (2017) Reintroduction of the endangered and endemic plant species Cochlearia bavarica—implications from conservation genetics. Ecol Evol 7:11100–11112

    Article  PubMed  PubMed Central  Google Scholar 

  • Königer J, Rebernig CA, Brabec J, Kiehl K, Greimler J (2012) Spatial and temporal determinants of genetic structure in Gentianella bohemica. Ecol Evol 2:363–368

    Article  Google Scholar 

  • Kuss P, Pluess AR, Ǽgisdóttir HH, Stöcklin J (2008) Spatial isolation and genetic differentiation in naturally fragmented plant populations of the Swiss Alps. J Plant Ecol 1:149–159

    Article  Google Scholar 

  • Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078

    Article  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413

    Article  PubMed  CAS  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation. J Ecol 94:942–952

    Article  Google Scholar 

  • Lennartsson T, Tuomi J, Nilsson P (1997) Evidence for an evolutionary history of overcompensation in the grassland biennial Gentianella campestris (Gentianaceae). Am Nat 149:1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Lennartsson T, Oostermeijer JGB, Van Dijk J, Den Nijs HCM (2000) Ecological significance of floral reproductive traits in Gentianella campestris (Gentianaceae). Basic Appl Ecol 1:69–81

    Article  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasding usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Matthies D, Bräuer I, Maiboom W, Tscharntke T (2004) Population size and the risk of extinction: empirical evidence from rare plants. Oikos 105:481–488

    Article  Google Scholar 

  • Oostermeijer JGB (1996) Population size, genetic variation, and related parameters in small, isolated plant populations: a case study. In: Settele J, Margules CR, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic, Dordrecht, pp 61–68

    Chapter  Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Paun O, Schönswetter P, Winkler M, IntraBioDiv-Consortium, Tribsch A (2008) Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol Ecol 17:4263–4275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analyses in Excel. Population genetic software for teaching and reseach. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peterson A, Bartish IV, Peterson J (2008) Effects of population size on genetic diversity, fitness and pollinator community composition in fragmented populations of Anthericum liliago L. Plant Ecol 198:101–110

    Article  Google Scholar 

  • Pfeifer M, Schatz B, Picó FX, Passalacqua NG, Fay MF, Carey PD, Jeltsch F (2009) Phylogeography and genetic structure of the orchid Himanthoglossum hircinum (L.) Spreng. across its European central-marginal gradient. J Biogeogr 36:2353–2365

    Article  Google Scholar 

  • Plenk K, Göd F, Kriechbaum M, Kropf M (2016) Genetic and reproductive characterisation of seasonal flowering morphs of Gentianella bohemica revealed strong reproductive isolation and possible single origin. Plant Biol 18:111–123

    Article  PubMed  CAS  Google Scholar 

  • Pluess AR, Stöcklin J (2004) Genetic diversity and fitness in Scabiosa columbaria in the Swiss Jura in relation to population size. Conserv Genet 5:145–156

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2007) Documentation for structure software: version 2.2

  • Raabova J, Van Rossum F, Jacquemart AL, Raspe O (2015) Population size affects genetic diversity and fine-scale spatial genetic structure in the clonal distylous herb Menyanthes trifoliata perspectives. Plant Ecol Evol Syst 17:193–200. https://doi.org/10.1016/j.ppees.2015.02.005

    Article  Google Scholar 

  • R-Core-Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing,, Vienna, Austria, http://www.R-project.org/. Accessed 23 Apr 2018

  • Reed DH, Frankham R (2003) Corelation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conserv Genet 8:893–902

    Article  CAS  Google Scholar 

  • Reisch C (2008) Glacial history of Saxifraga paniculata (Saxifragaceae)—molecular biogeography of a disjunct arctic-alpine species in Europe and North America. Biol J Linn Soc 93:385–398

    Article  Google Scholar 

  • Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215:1493–1511

    Article  Google Scholar 

  • Reisch C, Poschlod P, Wingender R (2003) Genetic variation of Saxifraga paniculata Mill. (Saxifragaceae): molecular evidence for glacial relict endemism in central Europe. Biol J Linn Soc 80:11–21

    Article  Google Scholar 

  • Reisch C, Schmid C, Hartig F (2018) A comparison of methods for estimating plant population size. Biodivers Conserv 27:2021–2028

    Article  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 2 edn. Kluwer Academic, Dordrecht, pp 1–8

    Google Scholar 

  • Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147

    Article  Google Scholar 

  • Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trend Ecol Evol 21:524–530

    Article  Google Scholar 

  • Schönfelder P, Bresinsky A (eds) (1990) Verbreitungsatlas der Farn- und Blütenpflanzen Bayerns. Ulmer, Stuttgart

    Google Scholar 

  • Sebald O, Seybold S, Philippi G, Wörz A (1998) Farn- und Blütenpflanzen Baden-Württembergs, vol 7. Ulmer, Stuttgart

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and sed set. Oecologia 12:432–440

    Article  Google Scholar 

  • Tausch S, Leipold M, Reisch C, Poschlod P (2015) Genbank Bayern Arche—a contribution to the permanent conservation of threatened plants in. Bavaria Anliegen Nat 37:82–91

    Google Scholar 

  • Vekemans X (2002) AFLP-surv version 1.0 vol 16. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale. Université Libre de Bruxelles, Bruxelles, Belgium

    Google Scholar 

  • Vogler F, Reisch C (2013) Vital survivors: low genetic variation but high germination in glacial relict populations of the typical rock plant Draba aizoides. Biodivers Conserv 22:1301–1316

    Article  Google Scholar 

  • Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117:193–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitlock R, Hipperson H, Thompson DBA, Butlin RK, Burke T (2016) Consequences of in-situ strategies for the conservation of plant genetic diversity. Biol Conserv 203:134–142

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trend Ecol Evol 11:413–418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Veronika Bäuerlein and Petra Schitko for lab work, Sabine Fischer for her help with the map, Peter Poschlod for lively discussions and the government of the Upper Palatinate for financial support.

Author information

Authors and Affiliations

Authors

Contributions

CR conceived and designed the study. Both authors contributed to data analysis. CR wrote the first draft of the manuscript, BH contributed to revisions.

Corresponding author

Correspondence to Christoph Reisch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in relation with this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 998 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisch, C., Hoiß, B. Genetic variation of Gentianella campestris ssp. campestris in the Northern Alps: how important are population size and isolation?. Alp Botany 129, 11–20 (2019). https://doi.org/10.1007/s00035-019-00216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-019-00216-4

Keywords

Navigation