Skip to main content
Log in

A paradox in time-consistency in the mean–variance problem?

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We establish new conditions under which a constrained (no short-selling) time-consistent equilibrium strategy, starting at a certain time, will beat the unconstrained counterpart, as measured by the magnitude of their corresponding equilibrium mean–variance value functions. We further show that the pure strategy of solely investing in a risk-free bond can sometimes simultaneously dominate both constrained and unconstrained equilibrium strategies. With numerical experiments, we also illustrate that the constrained strategy can dominate the unconstrained one for most of the commencement dates (even more than 90%) of a prescribed planning horizon. Under a precommitment approach, the value function of an investor increases with the size of the admissible sets of strategies. However, this may fail to be true under the game-theoretic paradigm, as the constraint of time-consistency itself affects the value function differently when short-selling is and is not prohibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In the literature of economics and finance, the notion of spendthrift is sometimes termed as “naive” (see [16] and [20]), since the agent may be too naive and not even recognize the time-inconsistency issues.

  2. It is reasonable to assume an increasing function of \(\gamma_{t}\) since people usually look for a more stable income as they get older, so they become more risk-averse, relative to their current wealth, as time evolves.

References

  1. Basak, S., Chabakauri, G.: Dynamic mean–variance asset allocation. Rev. Financ. Stud. 23, 2970–3016 (2010)

    Article  Google Scholar 

  2. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  3. Bensoussan, A., Wong, K.C., Yam, S.C.P., Yung, S.P.: Time-consistent portfolio selection under short-selling prohibition: from discrete to continuous setting. SIAM J. Financ. Math. 5, 153–190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björk, T., Khapko, M., Murgoci, A.: Time inconsistent stochastic control in continuous time: theory and examples. Working Paper (2016). Available online at arXiv:1612.03650

  5. Björk, T., Murgoci, A.: A theory of Markovian time inconsistent stochastic control in discrete time. Finance Stoch. 18, 545–592 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björk, T., Murgoci, A., Zhou, X.Y.: Mean–variance portfolio optimization with state-dependent risk aversion. Math. Finance 24, 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cui, X.Y., Li, D., Shi, Y.: Self-coordination in time inconsistent stochastic decision problems: a planner-doer game framework. J. Econ. Dyn. Control 75, 91–113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Czichowsky, C.: Time-consistent mean–variance portfolio selection in discrete and continuous time. Finance Stoch. 17, 227–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ekeland, I., Mbodj, O., Pirvu, T.A.: Time-consistent portfolio management. SIAM J. Financ. Math. 3, 1–32 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I., Pirvu, T.A.: Investment and consumption without commitment. Math. Financ. Econ. 2, 57–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forsyth, P.A., Wang, J.: Continuous time mean variance asset allocation: a time-consistent strategy. Eur. J. Oper. Res. 209, 184–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harris, C., Laibson, D.: Instantaneous gratification. Q. J. Econ. 128, 205–248 (2013)

    Article  MATH  Google Scholar 

  13. Karp, L.S.: Non-constant discounting in continuous time. J. Econ. Theory 132, 557–568 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kronborg, M.T., Steffensen, M.: Inconsistent investment and consumption problems. Appl. Math. Optim. 71, 473–515 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, D., Zhou, X.Y.: Continuous-time mean–variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42, 19–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marín-Solano, J., Navas, J.: Consumption and portfolio rules for time-inconsistent investors. Eur. J. Oper. Res. 201, 860–872 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  18. Pedersen, J.L., Peskir, G.: Optimal mean–variance portfolio selection. Math. Financ. Econ. 11, 137–160 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Phelps, E.S., Pollak, R.A.: On second-best national saving and game-equilibrium growth. Rev. Econ. Stud. 35, 185–199 (1968)

    Article  Google Scholar 

  20. Pollak, R.A.: Consistent planning. Rev. Econ. Stud. 35, 201–208 (1968)

    Article  Google Scholar 

  21. Peleg, B., Yaari, M.E.: On the existence of a consistent course of action when tastes are changing. Rev. Econ. Stud. 40, 391–401 (1973)

    Article  MATH  Google Scholar 

  22. Schweizer, M.: Mean–variance hedging. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance, pp. 1177–1181. Wiley, New York (2010)

    Google Scholar 

  23. Strotz, R.H.: Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23, 165–180 (1955)

    Article  Google Scholar 

  24. Vigna, E.: Tail optimality and preferences consistency for intertemporal optimization problems. Working Paper, Collegio Carlo Alberto 502 (2017). Available online at https://www.carloalberto.org/assets/working-papers/no.502.pdf

Download references

Acknowledgements

We are very grateful to various participants for their valuable discussions and comments after the talks based on the present work. We thank our colleague John Wright for his suggestions on enriching the presentation of our paper. We express our sincere gratitude to the editors and anonymous referees for their very useful suggestions and inspiring comments which much enhanced our article. The first author acknowledges the financial support from the National Science Foundation under grant DMS-1612880, and the Research Grant Council of Hong Kong Special Administrative Region under grant GRF 11303316. The second author acknowledges the financial support from ERC (279582) and SFI (16/IA/4443,16/SPP/3347), and the present work constitutes a part of his work for his postgraduate dissertation. The third author acknowledges the financial support from HKGRF-14300717 with the project title: New Kinds of Forward–Backward Stochastic Systems with Applications, HKSAR-GRF-14301015 with title: Advance in Mean Field Theory, Direct Grant for Research 2014/15 with project code: 4053141 offered by CUHK. He also thanks Columbia University for the kind invitation to be a visiting faculty member in the Department of Statistics during his sabbatical leave. The third author also recalls the unforgettable moments and the happiness shared with his beloved father during the drafting of the present article at their home. Although he just lost his father with the deepest sadness at the final stage of the review of this work, his father will never leave the heart of Phillip Yam; and he used this work in memory of his father’s brave battle against liver cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Bensoussan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Technical proofs in Sect. 4

Appendix: Technical proofs in Sect. 4

1.1 A.1 Proof of Theorem 4.1

Recall (1.7) and (1.9). Then (4.1) implies \(c^{(U)}_{T}=c^{(C)}_{T}<1\). Because we have \(G(x)=x\) when \(x\in(0,1)\) (see Theorem 1.6), we get for any \(t\) with \(c^{(C)}_{t} \in(0,1)\) that \(c^{(C)}_{t}=G(\frac{\alpha_{t}}{\sigma^{2}_{t}} d^{(C)}_{t})=\frac{\alpha_{t}}{\sigma^{2}_{t}} d^{(C)}_{t}\) by (1.9). Thus both \(c^{(C)}_{\cdot}\) and \(c^{(U)}_{\cdot}\) satisfy the same form of integral equations (see (1.7) and (1.9)) over \([t,T]\). Therefore, \(c^{(U)}_{t}=c^{(C)}_{t} \in(0,1)\) for any \(t>\sup\{t< T: c^{(C)}_{t} \notin(0,1) \}\). By Lemmas 3.1 (i) and 3.5 (i), (4.2) implies that both \(c^{(U)}\) and \(c^{(C)}\) are increasing in \(t\) whenever \(c^{(U)}_{t}=c^{(C)}_{t}>0\). Define

$$ \tau^{*}_{0}:=\sup\{t< T : c^{(U)}_{t}=c^{(C)}_{t}=0 \}\in[-\infty, T). $$

We consider two separate cases:

(i) If \(\tau^{*}_{0}=-\infty\), then \(c^{(U)}_{t}=c^{(C)}_{t} \in(0,1)\) for all \(t\leq T\) and it is clear that \(V^{(U)}(t,x)= V^{(C)}(t,x)\) for all \(t \leq T\) and \(x>0\).

(ii) If \(\tau^{*}_{0}>-\infty\), we have \(c^{(U)}_{t}=c^{(C)}_{t} \in(0,1)\) for all \(t \in(\tau^{*}_{0},T)\) and \(c^{(U)}_{t} \leq c^{(C)}_{t}=0\) for all \(t <\tau^{*}_{0}\) because of Lemmas 3.1 (i) and 3.5 (i). Therefore, we obtain \(V^{(U)}(t,x)= V^{(C)}(t,x)\) for all \(t \in[\tau^{*}_{0},T]\) and \(x>0\). Recall that the equilibrium value function in terms of the investment-to-wealth ratio \(c\) is

$$ V(t,x)= e^{\int^{T}_{t} (r_{s}+\alpha_{s} c_{s}) ds}x-\frac{\gamma_{t}}{2} \Big( e^{\int^{T}_{t} 2(r_{s}+\alpha_{s} c_{s})+\sigma_{s}^{2} (c_{s})^{2} ds}-e^{\int^{T}_{t} 2(r_{s}+\alpha_{s} c_{s})ds}\Big)x. $$

Differentiating the product \(e^{-\int^{T}_{t} r_{s} ds} V(t,x)\) gives

$$\begin{aligned} \frac{d}{dt}\big(e^{-\int^{T}_{t} r_{s} ds} V(t,x)\big) =&\frac{r_{t} \gamma_{t}-\gamma'_{t}}{2}e^{\int^{T}_{t} r_{s}+2\alpha_{s} c_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c_{s})^{2} ds}-1\big)x \\ & -\alpha_{t} c_{t} \Big(e^{\int^{T}_{t} \alpha_{s} c_{s} ds}-\gamma_{t} e^{\int^{T}_{t} r_{s}+2\alpha_{s} c_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c_{s})^{2} ds}-1\big) \Big)x \\ & +\frac{\gamma_{t} \sigma_{t}^{2} (c_{t})^{2}}{2} e^{\int^{T}_{t} r_{s}+2\alpha_{s} c_{s}+\sigma_{s}^{2} (c_{s})^{2} ds}x. \end{aligned}$$
(A.1)

We can then deduce that for any \(t < \tau^{*}_{0}\) and \(x>0\),

$$\begin{aligned} &\frac{d}{dt}\Big(e^{-\int^{T}_{t} r_{s} ds} \big(V^{(U)}(t,x)-V^{(C)}(t,x)\big)\Big) \\ &= \frac{r_{t} \gamma_{t}-\gamma'_{t}}{2}e^{\int^{T}_{t} r_{s} ds}\Big(e^{2\int ^{T}_{t} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big) \\ &\phantom{:=:\frac{r_{t} \gamma_{t}-\gamma'_{t}}{2}e^{\int^{T}_{t} r_{s} ds}}-e^{2\int^{T}_{\tau^{*}_{0}} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int^{T}_{\tau ^{*}_{0}} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big)\Big)x \\ &\phantom{=:} -\frac{\gamma_{t} \sigma_{t}^{2} (c^{(U)}_{t})^{2}}{2} e^{\int^{T}_{t} r_{s}+2 \alpha _{s} c^{(U)}_{s}+\sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}x \\ &< \frac{r_{t} \gamma_{t}-\gamma'_{t}}{2} e^{\int^{T}_{t} r_{s} ds}\Big(e^{2\int ^{T}_{t} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big) \\ &\phantom{=: \frac{r_{t} \gamma_{t}-\gamma'_{t}}{2} e^{\int^{T}_{t} r_{s} ds}\Big(}-e^{2\int^{T}_{\tau^{*}_{0}} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int^{T}_{\tau ^{*}_{0}} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big)\Big)x, \end{aligned}$$
(A.2)

where the first equality follows because \(c^{(C)}_{t}=0\) for \(t <\tau^{*}_{0}\), \(c^{(C)}_{t}=c^{(U)}_{t}\) for \(t \in[\tau^{*}_{0},T]\) and \(c^{(U)}_{t}\) satisfies (1.7). Next we compute

$$\begin{aligned} & \frac{d}{dt}\Big(e^{2\int^{T}_{t} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int ^{T}_{t} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big)\Big) \\ & = -2\alpha_{t} c^{(U)}_{t} e^{2\int^{T}_{t} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big) \\ & \phantom{=:} -\sigma^{2} (c^{(U)}_{s})^{2} e^{\int^{T}_{t} (2\alpha_{s} c^{(U)}_{s}+\sigma_{s}^{2} (c^{(U)}_{s})^{2}) ds} \\ & = \sigma^{2} (c^{(U)}_{s})^{2} e^{\int^{T}_{t} (2\alpha_{s} c^{(U)}_{s}+\sigma_{s}^{2} (c^{(U)}_{s})^{2}) ds}-\frac{2\alpha_{t}}{\gamma_{t}}c^{(U)}_{t} e^{-\int^{T}_{t} (r_{s}-\alpha_{s} c^{(U)}_{s} ) ds}\geq0 \end{aligned}$$

for \(t<\tau^{*}_{0}\), where the second equality follows from (1.7), and the positivity from the fact that \(c^{(U)}_{t} \leq0\) for \(t<\tau^{*}_{0}\). Hence we have

$$ e^{2\int^{T}_{t} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big)\leq e^{2\int^{T}_{\tau^{*}_{0}} \alpha_{s} c^{(U)}_{s} ds} \big(e^{\int^{T}_{\tau^{*}_{0}} \sigma_{s}^{2} (c^{(U)}_{s})^{2} ds}-1\big) $$

for \(t<\tau^{*}_{0}\). Together with the result in (4.2), the inequality (A.2) thus becomes

$$ \frac{d}{dt}\Big(e^{-\int^{T}_{t} r_{s} ds} \big(V^{(U)}(t,x)-V^{(C)}(t,x)\big)\Big) < 0 \qquad\text{ for $t< \tau^{*}_{0}$ and $x>0$.} $$

Since \(V^{(U)}(\tau^{*}_{0},x)=V^{(C)}(\tau^{*}_{0},x)\), we have for \(t<\tau ^{*}_{0}\) and \(x>0\) that

$$ e^{-\int^{T}_{t} r_{s} ds} \big(V^{(U)}(t,x)-V^{(C)}(t,x)\big)\leq e^{-\int ^{T}_{\tau^{*}_{0}} r_{s} ds} \big(V^{(U)}(\tau^{*}_{0},x)-V^{(C)}(\tau^{*}_{0},x)\big)=0, $$

and so the claim follows. □

1.2 A.2 Proof of Theorem 4.3

We only prove the constrained case and omit the unconstrained one as its argument is analogous. Using the differentiation in (A.1), we have for \(t \leq T\) and \(x>0\) that

$$\begin{aligned} \frac{d}{dt}\frac{ V^{(C)}(t,x)}{V^{(Rf)}(t,x)}&=\frac{d}{dt}\frac{ V^{(C)}(t,x)}{e^{\int^{T}_{t} r_{s} ds} x} \\ &=\left(\frac{r_{t} \gamma_{t}-\gamma'_{t}}{2}\right)e^{\int^{T}_{t} r_{s}+2\alpha _{s} c^{(C)}_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c^{(C)}_{s})^{2} ds}-1\big) \\ &\phantom{=:} -\alpha_{t} c^{(C)}_{t} \Big(e^{\int^{T}_{t} \alpha_{s} c^{(C)}_{s} ds}-\gamma_{t} e^{\int^{T}_{t} r_{s}+2\alpha_{s} c^{(C)}_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c^{(C)}_{s})^{2} ds}-1\big) \Big) \\ &\phantom{=:} +\frac{\gamma_{t} \sigma_{t}^{2} (c^{(C)}_{t})^{2}}{2} e^{\int^{T}_{t} r_{s}+2 \alpha _{s} c^{(C)}_{s}+\sigma_{s}^{2} (c^{(C)}_{s})^{2} ds} \\ &\leq -\alpha_{t} c^{(C)}_{t} \Big(e^{\int^{T}_{t} \alpha_{s} c^{(C)}_{s} ds}-\gamma_{t} e^{\int^{T}_{t} r_{s}+2\alpha_{s} c^{(C)}_{s} ds} \big(e^{\int^{T}_{t} \sigma_{s}^{2} (c^{(C)}_{s})^{2} ds}-1\big) \Big) \\ &\phantom{=:} +\frac{\gamma_{t} \sigma_{t}^{2} (c^{(C)}_{t})^{2}}{2} e^{\int^{T}_{t} r_{s}+2\alpha_{s} c^{(C)}_{s}+\sigma_{s}^{2} (c^{(C)}_{s})^{2} ds} , \end{aligned}$$
(A.3)

where the first inequality follows from (4.3). On the other hand, (1.9) gives

$$ \frac{\alpha_{t}}{\sigma_{t}^{2}}\bigg(\frac{1}{\gamma_{t}}e^{-\int^{T}_{t} (r_{s}+\alpha_{s} c^{(C)}_{s}+\sigma_{s}^{2} (c^{(C)}_{s})^{2}) ds}+e^{-\int^{T}_{t} \sigma_{s}^{2} (c^{(C)}_{s})^{2} ds}-1\bigg) \geq c^{(C)}_{t} $$

whenever \(c^{(C)}_{t} \geq0\). Thus (A.3) now becomes

$$\begin{aligned} &\frac{d}{dt}\frac{ V^{(C)}(t,x)}{V^{(Rf)}(t,x)} \\& \textstyle\begin{cases}\leq -\frac{\gamma_{t} \sigma_{t}^{2} (c^{(C)}_{t})^{2}}{2} e^{\int ^{T}_{t} r_{s}+2\alpha_{s} c^{(C)}_{s}+\sigma_{s}^{2} (c^{(C)}_{s})^{2} ds} \leq0 &\qquad \text{whenever } c^{(C)} \in(0,1],\\ \leq0 &\qquad \text{whenever } c^{(C)}=0. \end{cases}\displaystyle \end{aligned}$$

Hence

$$ \frac{V^{(C)}(t,x)}{V^{(Rf)}(t,x)} \geq\frac {V^{(C)}(T,x)}{V^{(Rf)}(T,x)}=1 \qquad\text{for } t \leq T, $$

and our claim is justified for the constrained case.  □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensoussan, A., Wong, K.C. & Yam, S.C.P. A paradox in time-consistency in the mean–variance problem?. Finance Stoch 23, 173–207 (2019). https://doi.org/10.1007/s00780-018-00381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-018-00381-0

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation