Skip to main content
Log in

Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

This article presents a new particle swarm optimization (PSO)-based multi-objective optimization algorithm, named multi-guide particle swarm optimization (MGPSO). The MGPSO is a multi-swarm approach, where each subswarm optimizes one of the objectives. An archive guide is added to the velocity update equation to facilitate convergence to a Pareto front of non-dominated solutions. An extensive empirical and stability analysis of the MGPSO is conducted. The empirical analysis focuses on the exploration behavior of the MGPSO and compares the performance of the MGPSO with that of state-of-the-art multi-objective PSO and evolutionary algorithms. The results show that the MGPSO is highly competitive on a number of benchmark functions. The paper provides a theoretical stability analysis which focuses on the sufficient and necessary conditions for order-1 and order-2 stability of the MGPSO. The paper extends existing work on MGPSO stability analysis by deriving new stability criteria for differing values of the acceleration coefficients used in the velocity update equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. https://cirg-up.github.io/cilib/.

References

  • Bonyadi, M. R., & Michalewicz, Z. (2016). Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Transactions on Evolutionary Computation, 20(5), 814–819.

    Article  Google Scholar 

  • Cleghorn, C., & Engelbrecht, A. (2016a). Particle swarm optimizer: The impact of unstable particles on performance. In Proceedings of the IEEE symposium series on swarm intelligence (pp. 1–7). Piscataway, NJ: IEEE Press.

  • Cleghorn, C. W., & Engelbrecht, A. P. (2014). Particle swarm convergence: Standardized analysis and topological influence. In Proceedings of international swarm intelligence conference (ANTS), swarm intelligence (pp. 134–145). Cham: Springer.

  • Cleghorn, C. W., & Engelbrecht, A. P. (2015a). Fully informed particle swarm optimizer: Convergence analysis. In Proceedings of the IEEE congress on evolutionary computation (pp. 164–170). Piscataway, NJ: IEEE Press.

  • Cleghorn, C. W., & Engelbrecht, A. P. (2015b). Particle swarm variants: Standardized convergence analysis. Swarm Intelligence, 9(2–3), 177–203.

    Article  Google Scholar 

  • Cleghorn, C. W., & Engelbrecht, A. P. (2016b). Unified particle swarm optimizer: Convergence analysis. In Proceedings of the IEEE congress on evolutionary computation (pp. 448–454). Piscataway, NJ: IEEE Press.

  • Cleghorn, C. W., & Engelbrecht, A. P. (2018). Particle swarm stability: A theoretical extension using the non-stagnate distribution assumption. Swarm Intelligence, 12(1), 1–22.

    Article  Google Scholar 

  • Cleghorn, C. W., Scheepers, C., & Engelbrecht, A. P. (2018). Stability analysis of a multi-objective particle swarm optimizer. In Proceedings of the 11th international conference on swarm intelligence.

  • Coello Coello, C. A., & Sierra, M. R. (2004). A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In Proceedings of the 3rd Mexican international conference on artificial intelligence (pp. 688–697). https://doi.org/10.1007/978-3-540-24694-7

  • Corne, D., Jerram, N., Knowles, J. D., & Oates, M. J. (2001). PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the genetic and evolutionary computation conference (GECCO 2001) (pp. 283–290). Citeulike-article-id: 8133801.

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Hoboken: Wiley. https://doi.org/10.1109/TEVC.2002.804322.

    Book  MATH  Google Scholar 

  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Parallel problem solving from nature PPSN VI pp 849–858. https://doi.org/10.1007/3-540-45356-3. http://repository.ias.ac.in/83498/.

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017.

    Article  Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1995). On the performance assessment and comparison of stochastic multiobjective optimisers. Parallel Problem Solving from Nature—PPSN IV, 1141, 584–593.

    Article  Google Scholar 

  • Franken, C. J. (2009). Visual exploration of algorithm parameter space. In Proceedings of IEEE congress on evolutionary computation (pp. 389–398). https://doi.org/10.1109/CEC.2009.4982973.

  • Gibbons, J. D., & Chakraborti, S. (2010). Nonparametric statistical inference (5th ed.). Boca Raton: Chapman and Hall.

    MATH  Google Scholar 

  • Grobler, J. (2009). Particle swarm optimization and differential evolution for multi objective multiple machine scheduling. Master’s thesis, University of Pretoria.

  • Grobler, J., & Engelbrecht, A. P. (2009). Hybridizing PSO and DE for improved vector evaluated multi-objective optimization. In Proceedings of IEEE congress on evolutionary computation (pp. 1255–1262). https://doi.org/10.1109/CEC.2009.4983089.

  • Harrison, K. R., Ombuki-Berman, B. M., & Engelbrecht, A. P. (2013). Knowledge transfer strategies for vector evaluated particle swarm optimization. In Proceedings of the 7th international conference on evolutionary multi-criterion optimization (pp. 171–184). https://doi.org/10.1007/978-3-642-37140-0.

    Google Scholar 

  • Helbig, M., & Engelbrecht, A. P. (2013). Analysing the performance of dynamic multi-objective optimisation algorithms. In Proceedings of the IEEE congress on evolutionary computation.

  • Helbig, M., & Engelbrecht, A. P. (2014). Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimisation problems. Swarm and Evolutionary Computing, 14, 31–47.

    Article  Google Scholar 

  • Huband, S., Barone, L., While, L., & Hingston, P. (2005). A scalable multi-objective test problem toolkit. In Proceedings of the 3rd international conference on evolutionary multi-criterion optimization (pp. 280–295). https://doi.org/10.1007/978-3-540-31880-4.

  • Huband, S., Hingston, P., Barone, L., & While, L. (2006). A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10(5), 477–506. https://doi.org/10.1109/TEVC.2005.861417.

    Article  MATH  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). https://doi.org/10.1109/ICNN.1995.488968.

  • Knowles, J. D., & Corne, D. W. (2000). Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 8(2), 149–172. https://doi.org/10.1162/106365600568167.

    Article  Google Scholar 

  • Matthysen, W., Engelbrecht, A. P., & Malan, K. M. (2013a). Analysis of stagnation behavior of vector evaluated particle swarm optimisation. In Proceedings of the IEEE swarm intelligence symposium. IEEE.

  • Matthysen, W., Engelbrecht, A. P., & Malan, K. M. (2013b). Analysis of stagnation behavior of vector evaluated particle swarm optimization. In Proceedings of the IEEE symposium on swarm intelligence (pp. 155–163). https://doi.org/10.1109/SIS.2013.6615173.

  • Nebro, A., Durillo, J., García-Nieto, J., Coello Coello, C. A., Luna, F., & Alba, E. (2009). SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In Proceedings of the IEEE symposium on multi-criteria decision-making (Vol. 2, pp. 66–73). https://doi.org/10.1109/MCDM.2009.4938830.

  • Nebro, A. J., Durillo, J. J., & Vergne, M. (2015). Redesigning the jMetal multi-objective optimization framework. In Proceedings of the companion publication of the 2015 annual conference on genetic and evolutionary computation (pp. 1093–1100). https://doi.org/10.1145/2739482.2768462. arXiv:1508.06655v1.

  • Pampara, G., Engelbrecht, A. P., & Cloete, T. (2008a). CIlib: A collaborative framework for computational intelligence algorithms—Part I. In Proceedings of the IEEE international joint conference on neural networks (pp. 1750–1757). https://doi.org/10.1109/IJCNN.2008.4634035.

  • Pampara, G., Engelbrecht, A. P., & Cloete, T. (2008b). CIlib: A collaborative framework for computational intelligence algorithms—Part II. In Proceedings of the IEEE international joint conference on neural networks (pp. 1764–1773).

  • Parsopoulos, K. E., Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P., & Vrahatis, M. N. (2004). Vector evaluated differential evolution for multiobjective optimization. In: Proceedings of the IEEE congress on evolutionary computation (vol. 1, pp. 204–211). https://doi.org/10.1109/CEC.2004.1330858.

  • Parsopoulos, K. E., & Vrahatis, M. N. (2002a). Particle swarm optimization method in multiobjective problems. In Proceedings of the ACM symposium on applied computing (pp. 603–607). https://doi.org/10.1145/508791.508907.

  • Parsopoulos, K. E., & Vrahatis, M. N. (2002b). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1(2), 235–306.

    Article  MathSciNet  Google Scholar 

  • Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st international conference on genetic algorithms, January 1985 (pp. 93–100). http://dl.acm.org/citation.cfm?id=657079.

  • Scheepers, C. (2018). Multi-guided particle swarm optimization: A multi-objective particle swarm optimizer. Doctor’s dissertation, University of Pretoria.

  • Scheepers, C., & Engelbrecht, A. P. (2016a). Vector evaluated particle swarm optimization archive management: Pareto optimal front diversity sensitivity analysis. In Proceedings of the IEEE symposium series on computational intelligence. https://doi.org/10.1109/SSCI.2016.7850264.

  • Scheepers, C., & Engelbrecht, A. P. (2016b). Vector evaluated particle swarm optimization exploration behavior part I: Explorative analysis. In Proceedings of the IEEE congress on evolutionary computation.

  • Scheepers, C., & Engelbrecht, A. P. (2016c). Vector evaluated particle swarm optimization exploration behavior part II: Quantitative analysis. In Proceedings of the IEEE congress on evolutionary computation.

  • Scheepers, C., & Engelbrecht, A. P. (2017). Vector evaluated particle swarm optimization: The archive’s influence on performance. In Proceedings of the IEEE congress on evolutionary computation.

  • Scheepers, C., & Engelbrecht, A. P. (2018). Comparing performance of multi-objective algorithms using the porcupine measure. Under review (pp. 1–12).

  • Sierra, M. R., & Coello Coello, C. A. (2004). A new multi-objective particle swarm optimizer with improved selection and diversity mechanisms. Technical report, Evolutionary Computation Group at CINVESTAV-IPN, México.

  • Sierra, M. R., & Coello Coello, C. A. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and -dominance. In Proceedings of the 3rd international conference on evolutionary multi-criterion optimization (Vol. 3410, pp. 505–519). Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4.

  • Van der Stockt, S. A. G., & Engelbrecht, A. P. (2018). Analysis of selection hyper-heuristics for population-based meta-heuristics in real-valued dynamic optimization. In Swarm intelligence and evolutionary computation (pp. 127–146).

  • Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731. https://doi.org/10.1109/TEVC.2007.892759.

    Article  Google Scholar 

  • Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Technical report, Swiss Federal Institute of Technology (ETH) Zurich.

  • Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms: A comparative case study. In Proceedings of the international conference on parallel problem solving from nature (pp. 292–301).

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 4(3), 257–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andries P. Engelbrecht.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheepers, C., Engelbrecht, A.P. & Cleghorn, C.W. Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis. Swarm Intell 13, 245–276 (2019). https://doi.org/10.1007/s11721-019-00171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-019-00171-0

Keywords

Navigation