Skip to main content
Log in

Growth and Seed Production Response of Commelina Communis L. to Water Stress

Wachstum und Saatgutproduktion – Reaktion von Commelina communis L. auf Wasserstress

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

A greenhouse-based in vitro investigation was carried out to determine the adaptation of Commelina communis L. to water stress and its deleterious influence on growth and seed production of C. communis. Plant height and number of leaves were regressed for two experiments (degree of water stress and durations of water stress) using three parameter sigmoid model. Different degree of water response for C. communis was 100%, 80%, 60%, 40% and 20% of field capacity (FC). Maximum plant height (85.58 cm) and number of leaves (92.96) with normal plant morphology, high seed and biomass production were recorded for 100 and 80% FC. However, a drastic decline was observed when water stress was increased (minimum plant height [20.83 cm] and number of leaves [21.87] was observed in 20% followed by 40% FC). Similarly, water duration responses were also considered for C. communis i.e. 2, 3, 4, and 6 days’ durations following 100% of field capacity. The results showed an inverse correlation between duration of water stress and C. communis performance. As the duration of water stress were reduced, the plant height, number of leaves, biomass and seed production were increased. This proves that C. communis growth and production increases with high water content, whereas water stress significantly decreases its growth and seed production. Results of these experiments showed that proper water management in cropping system could be an important component to deal with the management of C. communis.

Zusammenfassung

In einem Gewächshaus-Experiment wurde die Anpassung von Commelina communis L. an Wasserstress und dessen Auswirkung auf Wachstum und Samenproduktion der Pflanze bestimmt. Die Pflanzenhöhe und die Anzahl der Blätter wurden für zwei Experimente (Grad des Wasserstresses und Dauer des Wasserstresses) unter Verwendung eines Drei-Parameter-Wachstumsmodells abgebildet. Der unterschiedliche Grad der Wasserstresses für C. communis betrug 100 %, 80 %, 60 %, 40 % und 20 % der Feldkapazität. Die maximale Pflanzenhöhe (85,58 cm) und Anzahl der Blätter (92,96 cm) bei normaler Pflanzenmorphologie, hoher Samen- und Biomasseproduktion wurden für eine Feldkapazität von 100 und 80 % aufgezeichnet. Ein drastischer Rückgang wurde jedoch beobachtet, wenn der Wasserstress erhöht wurde. Die Untersuchung der Dauer des Wasserstresses umfasste 2, 3, 4 und 6 Tage nach 100 % der Feldkapazität. Die Ergebnisse zeigten eine inverse Korrelation zwischen der Dauer des Wasserstresses und der Leistung von C. communis. Als die Dauer des Wasserstresses verringert wurde, wurden die Pflanzenhöhe, die Anzahl der Blätter, die Biomasse und die Samenproduktion maximiert. Dies beweist, dass Wachstum und Produktion von C. communis mit dem hohen Wassergehalt zunehmen, während Wasserstress das Wachstum und die Samenproduktion signifikant verringern. Die Ergebnisse dieser Experimente zeigen, dass eine ordnungsgemäße Wasserbewirtschaftung im Anbausystem eine wichtige Komponente im Umgang mit C. communis sein könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bortolheiro FPAP, Silva MA (2017) Physiological response and productivity of safflower lines under water deficit and rehydration. An Acad Bras Cienc 89:3051–3066

    Article  CAS  Google Scholar 

  • Bradley K (2012) Asiatic dayflower: an increasing weed problem in missouri corn and soybean fields. Integr Pest Manag 5:34–43 (https://ipm.missouri.edu/IPCM/archive/2012/v22n5.pdf Accessed June 03, 2019.)

    Google Scholar 

  • Chauhan BS (2013) Growth response of itchgrass (Rottboellia cochinchinensis) to water stress. Weed Sci 61:98–103

    Article  CAS  Google Scholar 

  • Chauhan BS, Johnson DE (2010) Growth and reproduction of junglerice (Echinochloa colona) in response to water stress. Weed Sci 58:132–135

    Article  CAS  Google Scholar 

  • Dass A, Shekhawat K, Choudhary AK, Sepat S, Rathore SS, Mahajan G, Chauhan BS (2017) Weed management in rice using crop competition—a review. Crop Prot 95:45–52

    Article  Google Scholar 

  • Fawcett JA (2002) Glyphosate tolerant Asiatic dayflower (C. communis L.) control in no-till soybeans. Proc North Cent Weed Sci Soc 57:183

    Google Scholar 

  • Ghanbary E, Kouchaksaraei MT, Mirabolfathy M, Modarres Sanavi SAM, Rahaei M (2017) Growth and physiological responses of Quercus brantii seedlings inoculated with Biscogniauxia mediterranea and Obolarina persica under drought stress. Forest Pathol 47:e12353

    Article  Google Scholar 

  • Haffani S, Mezni M, Slama I, Ksontini M, Chaibi W (2014) Plant growth, water relations and proline content of three vetch species under water-limited conditions. Grass Forage Sci 69:323–333

    Article  CAS  Google Scholar 

  • Hui D, Yu CL, Deng Q, Dzantor EK, Zhou S, Dennis S, Sauve R, Johnson TL, Fay PA, Shen W, Luo Y (2018) Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: a mesocosm experiment. PLoS ONE 13:e192555

    Article  Google Scholar 

  • Irmak S, Haman DZ, Irmak A, Jones JW, Campbell KL, Crisman TL (2004) Measurement and analysis of growth and stress parameters of Viburnum odoratissimum (Ker-gawl) grown in a multi-plot box system. HortSci 39:1445–1455.

    Article  Google Scholar 

  • Kaur S, Aulakh J, Jhala AJ (2016) Growth and seed production of glyphosate-resistant giant ragweed (Ambrosia trifida L.) in response to water stress. Can J Plant Sci 96:828–836

    Article  CAS  Google Scholar 

  • Kebbas S, Benseddik T, Makhlouf IH, Aid F (2018) Physiological and biochemical behaviour of Gleditsia triacanthos L. young seedlings under drought stress conditions. Not Bot Horti Agrobo 46:585–592

    Article  CAS  Google Scholar 

  • Kutbay HG, Uckan F (1998) Phenotypic plasticity in Turkish Commelina communis L. (Comelinacea) populations. J Bot 22:199–204

    Google Scholar 

  • Li FL, Bao WK, Wu N, You C (2008) Growth, biomass partitioning, and water-use efficiency of a leguminous shrub (Bauhinia faberi var. microphylla) in response to various water availabilities. New For 36:53–65

    Article  Google Scholar 

  • Mahajan G, George-Jaeggli B, Walsh M, Chauhan BS (2018) Effect of soil moisture regimes on growth and seed production of two Australian biotypes of Sisymbrium thellungii O. E. Schulz. Front Plant Sci 9:1241

    Article  Google Scholar 

  • Manes F, Vitale M, Donato E, Giannini M, Puppi G (2006) Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetica 44:387–393

    Article  Google Scholar 

  • Massa AN, Childs KL, Buell CR (2013) Abiotic and biotic stress responses in Solanum tuberosum group Phureja DM1-3 516 R44 as measured through whole transcriptome Sequencing. Plant Genome 6:1–10

    Article  CAS  Google Scholar 

  • Mishra JS, Singh VP, Yaduraju NT (2002) Interference of common dayflower (Commelina communis L.) in soybean. Indian J Weed Sci 34:295–296

    Google Scholar 

  • Movaghatiana A, Khorsandib F (2014) Allelopathic effects of extracts from two growth stages of wheat on wild mustard germination characteristics. Inter J Plant Environ Sci 4:454–458

    Google Scholar 

  • Owen MDK, Zelaya IA (2009) Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 61:301–311

    Article  Google Scholar 

  • Procopio SO, Santos JB, Silva AA, Donagemma GK, Mendonça ES (2004a) Permanent wilting point of soybean, bean, and weeds. Planta Daninha 22:35–41

    Article  Google Scholar 

  • Prostko EP, Culpepper AS, Webster TS, Flanders JT (2005) Tropical spiderwort identification and control in Georgia field crops. Circ 884. Univ. of Georgia. College of agric. and environ. Sci./coop. Ext. Serv. Bull. http://pubs.caes.uga.edu/caespubs/pubs/pdf/C884.pdf. Accessed 25 Sept 2001

    Google Scholar 

  • Robbins NE, Dinnenya JR (2018) Growth is required for perception of water availability to pattern plant root branches. Proceeding of national academy of sciences of the United state of America (PNAS). https://www.biorxiv.org/content/biorxiv/early/2017/01/02/097758.full.pdf. Accessed 05 Nov 2018

    Google Scholar 

  • Sage RF, Kubiens DS (2003) Quo vadis c (4)? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77:209–225

    Article  CAS  Google Scholar 

  • Sarangi D, Irmak S, Lindquist JL, Knezevic SZ, Jhala AJ (2015) Effect of water stress on the growth and fecundity of common Waterhemp (Amaranthus rudis). Weed Sci 64:42–52

    Article  Google Scholar 

  • Steadman KJ, Ellery AJ, Chapman R, Moore A, Turner NC (2004) Maturation temperature and rainfall influence seed dormancy characteristics of annual ryegrass (Lolium rigidum). Aust J Agric Res 55:1047–1057

    Article  Google Scholar 

  • Taiz L, Zeiger E (2013) Plant physiology, 5th edn. Artmed, Porto Alegre, Brazil. New Forest

    Google Scholar 

  • Ulloa SM, Owen MDK (2009) Response of Asiatic Dayflower (Commelina communis L.) to glyphosate and alternatives in soybean. Weed Sci 57:74–80

    Article  CAS  Google Scholar 

  • Webster TM, Grey TL (2008) Growth and reproduction of Benghal dayflower (Commelina benghalensis) in response to drought stress. Weed Sci 56:561–566

    Article  CAS  Google Scholar 

  • Wiatrak PJ, Wright DL, Marois JJ (2004) Evaluation of weed control programs and salt formulations in glyphosate-resistant cotton. Proc. of the 26th Southern Conservation Tillage Conference for Sustainable Agriculture, Raleigh, pp 328–332

    Google Scholar 

  • Zhang YJ, Xie ZK, Wang YJ, Su PX, An LP, Gao H (2011) Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russ J Plant Physl 58:844–850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key Research and Development Program of China (2016YFD0300701) and the earmarked fund for China Agriculture Research System (CARS-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xiang-ju.

Ethics declarations

Conflict of interest

M. Haroon, Y. Hai-yan, C. Hailan and L. Xiang-ju declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroon, M., Hai-yan, Y., Hailan, C. et al. Growth and Seed Production Response of Commelina Communis L. to Water Stress. Gesunde Pflanzen 71, 281–288 (2019). https://doi.org/10.1007/s10343-019-00474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00474-6

Keywords

Schlüsselwörter

Navigation