Skip to main content

Advertisement

Log in

In Vitro Biodegradation and Biocompatibility of Mg–HA-Based Composites for Orthopaedic Applications: A Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Magnesium (Mg)-based material systems offer great potential for healing bone fracture and defects, in terms of reduced stress shielding effect and non-toxicity, due to their biodegradability and biocompatibility. However, an issue with controlling degradation rate of Mg in an intraosseous (occurring within bone) environment has impeded their application in orthopaedics. As a solution to this problem, Mg can be combined with other corrosion-resistant and bioactive materials to form composite. Hydroxyapatite (HA) is an attractive bioceramic for implants due to its similar chemical composition to the apatite found in bone. Thus, incorporation of HA in Mg assists in enhancing multiple engineering properties that are critical for its widespread use in orthopaedic application. Tremendous improvement in the mechanical and degradation properties of HA-reinforced Mg composite, along with their impressive biocompatibility, has led to further interest in research, which has resulted in some clinical trials of Mg–HA-based composites, as well. This review article summarises researches, carried out till date on Mg–HA-based composite, with a special focus on significant role of HA in tuning the degradation and mechanical behaviour of Mg-based materials. The detailed summary on biocompatibility of Mg–HA-based composites has also been covered. A comprehensive understanding on biocompatibility and degradation behaviour of Mg–HA system is needed to assess the potential of these composites in orthopaedic application. However, such review is missing in available literatures. On the basis of current studies available on Mg–HA-based composites for orthopaedic application, guidelines for future application in clinical trials have also been framed and presented in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:

Source: http://Scopus.com

Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Similar content being viewed by others

References

  1. Hill G et al (2010) Benefits and associated risks of using allograft, autograft and synthetic bone fusion material for patients and service providers—a systematic review. JBI Libr Syst Rev 8:1–13

    Google Scholar 

  2. Moussy F et al (2010) Biomaterials for the developing world. J. Biomed. Mater. Res. A 94:1001–1003

    Google Scholar 

  3. Stumpf CP et al (2013) Biomaterials in dental ceramics, topics in mining, metallurgy and materials engineering. Springer, Berlin, pp 9–13

    Google Scholar 

  4. Zheng YF, Gu XN, Witte F et al (2014) Biodegradable metals. Mater Sci Eng, R 77:1–34

    Google Scholar 

  5. Katti S, Lakshmi IR, Laurecin CT et al (2002) Toxicity biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54:933–961

    CAS  Google Scholar 

  6. Vert M, Maudtui J, Li S et al (1994) Biodegradation of PLA/PGA polymers: increasing complexity. Biomaterials 15:1209–1213

    CAS  Google Scholar 

  7. Cai X, Tong H, Hu J et al (2009) Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater 5:2693–2703

    CAS  Google Scholar 

  8. EdiTanase C et al (2014) PLA/chitosan/keratin composites for biomedical applications. Mater Sci Eng, C 40:242–247

    Google Scholar 

  9. Park SY et al (2010) Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng Part A 16:1271–1279

    CAS  Google Scholar 

  10. Mieszawska AJ et al (2011) Clay enriched silk biomaterials for bone formation. Acta Biomater 7:3036–3041

    CAS  Google Scholar 

  11. Wang Y et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 9(3):415–428

    Google Scholar 

  12. Bhattacharjee P et al (2017) Silk scaffolds in bone tissue engineering An overview. Acta Biomater 63:1–17

    CAS  Google Scholar 

  13. [Online] http://pdf.medicalexpo.com/pdf/jeil-medical-corporation/cmf-biofix-biodegradable-bone-fixation-system/68935-181875.html

  14. Terasaka S, Iwasaki Y, Uchida T et al (2006) Fibrin glue and polyglycolic acid non woven fabric as a biocompatible dural substitute. Neurosurgery 58:134–139

    Google Scholar 

  15. Witte F, Hort N, Kainer KU et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72

    CAS  Google Scholar 

  16. Sáenz A, Rivera-Muñoz EW, Castaño VM et al (1991) Ceramic biomaterials: an introductory overview. J Mater Educ 21:297–306

    Google Scholar 

  17. Khanra AK, Jung HC, Hong KS, Shin KS et al (2010) Microstructure and mechanical properties of Mg–HAP composites. Bull Mater Sci 33:43–47

    CAS  Google Scholar 

  18. Hee Kim Y, Jyoti MA, Youn M Ho, Sun Youn H, Seok Seo H et al (2010) In vitro and in vivo evaluation of a macro porous β-TCP granule-shaped bone substitute fabricated by the fibrous monolithic process. Biomed Mater 5:359–366

    Google Scholar 

  19. Gu YW, Loha NH, Tor SB, Cheang P et al (2002) Spark plasma sintering of hydroxyapatite powders. Biomaterials 23:37–43

    CAS  Google Scholar 

  20. White AA et al (2007) Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4:1–13

    CAS  Google Scholar 

  21. Yu LG, Khor KA, Cheang P et al (2003) Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings. Biomaterials 24:2695–2705

    CAS  Google Scholar 

  22. Hench LL et al (2002) Third-generation biomedical materials. Science 295:1014–1017

    CAS  Google Scholar 

  23. Xu W et al (2018) Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin. Mater Sci Eng C 92:11–19

    CAS  Google Scholar 

  24. Sivakumar M, Dhanadurai KS, Thulasiraman V et al (1995) Failures in stainless steel orthopaedic implant devices: a survey. J Mater Sci Lett 14:351–354

    CAS  Google Scholar 

  25. Gonzalez-Carrasco JL et al (2009) Metals as bone repair materials. In: Planell JA, Best SM, Lacroix D, Merolli A (eds) Bone repair biomaterials. Woodhead Publishing, pp 154–193

  26. Chen Q et al (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57

    Google Scholar 

  27. Stohs SJ et al (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321–336

    CAS  Google Scholar 

  28. Manam NS, Harun, Shri DNA et al (2017) Study of corrosion in biocompatible metals for implants: a review. J Alloys Compound 701:698–715

    CAS  Google Scholar 

  29. Jaiswal S, Manoj Kumara R, Roy P, Lahiri D et al (2018) Mechanical, corrosion and biocompatibility behaviour of Mg–3Zn–HA biodegradable composites for orthopaedic fixture accessories. J Mech Behav Biomed Mater 78:442–454

    CAS  Google Scholar 

  30. Rahim MI et al (2018) Advances and challenges of biodegradable implant materials with a focus on magnesium-alloys and bacterial infections. Metals 8:532

    Google Scholar 

  31. Pierson D et al (2012) A simplified in vivo approach for evaluating the bioabsorbable behaviour of candidate stent materials. J Biomed Mater Res B 100B:58–67

    CAS  Google Scholar 

  32. Staiger MP, Pietak AM, Dias G et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1736

    CAS  Google Scholar 

  33. Waizy H, Reifenrath J, Windhagen H et al (2013) Biodegradable magnesium implants for orthopedic applications. J Mater Sci 48:39–50

    CAS  Google Scholar 

  34. Ratna Sunil B, Sampath Kumar TS, Nandakumar V et al (2014) Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites. J Mater Sci Mater Med 25:975–988

    CAS  Google Scholar 

  35. Ratna Sunil B, Sampath Kumar TS, Nandakumar V et al (2014) Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior. Mater Sci Eng C 39:315–324

    CAS  Google Scholar 

  36. Witte F, Fischer J, Crostack HA, Kaese, Beckmann F, Windhagen H et al (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7):1013–1018

    CAS  Google Scholar 

  37. Wang J, Xu W, Liu L Qin et al (2016) Biodegradable magnesium (Mg) implantation does not impose related metabolic disorders in rats with chronic renal failure. Sci Rep 6:26341

    CAS  Google Scholar 

  38. Lambotte L (1932) Utilisation of magnesium comme materiel perdu dans l’osteosynthèse. Bull Mem Soc Nat Chir 28:1325–1334

    Google Scholar 

  39. McBride ED (1938) Absorbable metal in bone surgery. J Am Med 111:2464–2467

    CAS  Google Scholar 

  40. Ratna Sunil B, Sampath Kumar TS et al (2014) Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants. J Mech Behav Biomed Mater 40:178–189

    CAS  Google Scholar 

  41. Ahmadkhaniha D, Fedel M, Sohi A, Deflorian F et al (2016) Corrosion behavior of magnesium and magnesium–hydroxyapatite composite fabricated by friction stir processing in dulbecco’s phosphate buffered saline. Corros Sci 104:319–329

    CAS  Google Scholar 

  42. Wang X, Dong LH, Li XL, Ma XL, Zheng YF et al (2013) Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting. Mater Sci Eng, C 33:4266–4273

    CAS  Google Scholar 

  43. Sawada K, Ika KF, Zasshi D et al (1998) 107(2):237–250

  44. Kawatani H, Fukumoto K, Zairyo S et al (1994) 12(3):119–126

  45. Khanra AK, Jung HC, Shin KS et al (2010) Comparative property study on extruded Mg–HAP and ZM61–HAP composites. Mater Sci Eng, A 527:6283–6288

    Google Scholar 

  46. Chen B, Yin KY, Lu TF, Sun BY, Zheng JX et al (2016) AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J Mater Sci Technol 32:858–864

    Google Scholar 

  47. Haghshenas M et al (2017) Mechanical characteristics of biodegradable magnesium matrix composites: a review. J Magn Alloys 5(2):189–201

    CAS  Google Scholar 

  48. Gu X, Zhou W, Zheng Y, Xi Y, Chai D et al (2010) Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater Sci Eng, C 30:827–832

    CAS  Google Scholar 

  49. Zhao J, Yu Z, Chen L et al (2011) Biodegradable behaviors of Mg–6%Zn–5% Hydroxyapatite biomaterial. Adv Mater Res 239–242:1287–1291

    Google Scholar 

  50. Sun J, Chen M, Cao G, Wei J et al (2013) The effect of nano-hydroxyapatite on the microstructure and properties of Mg–3Zn–0.5Zr alloy. J Compo Mater 48:825–834

    Google Scholar 

  51. Gu X, Zhou W, Zheng Y, Xi Y, Chai D et al (2010) Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater Sci Eng C 30:827–832

    CAS  Google Scholar 

  52. Dubey A et al (2019) Mechanical integrity of biodegradable Mg–HA composite during in-vitro exposure. J Mater Eng Perform 8(2):800–809

    Google Scholar 

  53. Liu DB et al (2010) Fabrication and corrosion behavior of HA/Mg–Zn biocomposites. Front Mater Sci Chin 4:139–144

    Google Scholar 

  54. Dubey A, Jaiswal S, Roy P, Lahiri D et al (2019) Protein adsorption and biodegradation behaviour of Mg–3Zn/HA for biomedical application. Nanomater Energy 8:1–10

    Google Scholar 

  55. Salleh EM, Zuhailawati H, Noor M, Othman NK et al (2018) In vitro biodegradation and mechanical properties of Mg–Zn alloy and Mg–Zn–Hydroxyapatite composite produced by mechanical alloying for potential application in bone repair. Metall Mater Trans A 49:5888–5903

    CAS  Google Scholar 

  56. Guo P, Cui Z, Cheng L, WenxianWang W, Xu B et al (2016) Preparation of Mg/Nano-HA composites by spark plasma sintering method and evaluation of different milling time effects on their microhardness, corrosion resistance, and biocompatibility. Adv Eng Materals 19(1):1600294

    Google Scholar 

  57. Kim KR, Ahn JW, Han JH, Roh JS, Kim WJ, Kim HS et al (2014) Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering. Metall Mater Int 20(6):1095–1101

    CAS  Google Scholar 

  58. Azrina WN, Muhammada W, Mutohd Y, YukioMiyashitad Y et al (2011) Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J Alloy Compd 509:6021–6029

    Google Scholar 

  59. Viswanathan R, Rameshbabu N, Sreekanth D, Venkateswarlu K, Rani S, Muthupandi V et al (2013) Plasma electrolytic oxidation and characterization of spark plasma sintered magnesium/hydroxyapatite composites). Mater Sci Forum 765:827–831

    Google Scholar 

  60. Prakash C, Singh S, Mia M, Królczyk G, Khanna N et al (2018) Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Materials 111602

  61. Prakash C, Sidhu S, Verma K, Sigh S et al (2018) Synthesis and characterization of Mg–Zn–Mn–HA composite by spark plasma sintering process for orthopedic applications. Vacuum 155:578–584

    CAS  Google Scholar 

  62. Campoa RD, Savoini B, Mongea MA, Garce´s G et al (2014) Mechanical properties and corrosion behavior of Mg–HAP composites. J Mech Behav Biomed Mater 39:238–246

    Google Scholar 

  63. Brown A, Zaky S, Sfeir C et al (2015) Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater 11:543–553

    CAS  Google Scholar 

  64. Liu Y, Liu D et al (2014) Corrosion properties of compositematerials HA (beta-TCP)/Mg–Zn–Ca. Rare Metal Mater Eng 43(1):205–209

    Google Scholar 

  65. Bansal S, Chauhan V, Juyal A, Raghuvanshi S et al (2009) Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion. Indian J Orthopaed 43:234–239

    Google Scholar 

  66. Ye X, Chen M et al (2010) In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites. J Mater Sci Mater Med 21:1321–1328

    CAS  Google Scholar 

  67. Sun M, Chen G, Liu B, Wei J et al (2013) The effect of nano-hydroxyapatite on the microstructure and properties of Mg–3Zn–0.5Zr alloy. J Compos Mater 48:825–834

    Google Scholar 

  68. Champion E et al (2013) Sintering of calcium phosphate bioceramics. Acta Biomater 9:5855–5875

    CAS  Google Scholar 

  69. Kutty MG, Bhaduri SB, Yaghoubi A et al (2015) In situ measurement of shrinkage and temperature profile in microwave-and conventionally-sintered hydroxyapatite bioceramic. Mater Lett 161:375–378

    CAS  Google Scholar 

  70. Xiong G, Nie Y, Li J, Zhu Y, Li W et al (2016) Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr Appl Phys 16:830–836

    Google Scholar 

  71. Ma C, Chen L, Xu J, Frank E, Neil P, Duffie A, Zheng J, Li X et al (2013) Biodegradability and mechanical performance of hydroxyapatite reinforced magnesium matrix nanocomposites. Suppl Proc Vol 1 Mater Process Interfaces 120124

  72. Ma C, Chen L, Xu J, Fehrenbacher A, Zheng J, Li X et al (2013) Effect of fabrication and processing technology on the biodegradability of magnesium nanocomposites. J Biomed Mater Res B Appl Biomater 101B

  73. Li K, Zhao Y et al (2019) Research status and prospect of friction stir processing technology. Coatings 9:2–14

    Google Scholar 

  74. Khalil A, Sherif ME et al (2011) Corrosion passivation in simulated body fluid of magnesium/hydroxyapatite nanocomposites sintered by high frequency induction heating. Int J Electrochem Sci 6:6184–6199

    CAS  Google Scholar 

  75. Khalil A, Sherif ME et al (2012) Effect of high-frequency induction heat sintering conditions on the microstructure and mechanical properties of nanostructured magnesium/hydroxyapatite nanocomposites. Mater Des 36:58–68

    CAS  Google Scholar 

  76. Xu L, Pan F, Yang L, Zhang E, Yang K et al (2009) In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30:1512–1523

    CAS  Google Scholar 

  77. Chen B, Yin KY, Dong Q, Zheng JX, Lu C, Li ZC et al (2016) AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J Mater Sci Technol 32:858–864

    Google Scholar 

  78. Kowalski K, Nowak M, Jurczyk M et al (2016) The effects of hydroxyapatite addition on the properties of the mechanically alloyed and sintered Mg–RE–Zr Alloy. 25:4469–4477

    CAS  Google Scholar 

  79. Pramanik S, Agarwal AK et al (2005) Development of high strength hydroxyapatite for hard tissue replacement. Trends Biomater Artif Organs 19:46–51

    Google Scholar 

  80. Saravanan RA, Surappa MK et al (2000) Fabrication and characterization of pure magnesium-30 vol% SiC particle composite. Mater Sci Eng A 276:108–116

    Google Scholar 

  81. Witte F, Kaese V, Switzer E, Lindenberg A, Wirth M, Windhagen H et al (2005) In vivo corrosion of magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563

    CAS  Google Scholar 

  82. Song G et al (2007) Control of biodegradation of biocompatible magnesium alloys. Corros Sci 49:1696–1701

    CAS  Google Scholar 

  83. Witte F, Feyerabend F, Fischer J, Blawert C, Dietzel W, Hort N et al (2007) Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials 28:2163–2174

    CAS  Google Scholar 

  84. Ye X, Chen M, Liu D et al (2010) In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites. Journal of. Mater Sci Mater Med 21:1321–1328

    CAS  Google Scholar 

  85. Chiu C, Lu C, Ou KL et al (2017) Effect of hydroxyapatite on the mechanical properties and corrosion behavior of Mg–Zn–Y Alloy. Materials 10:855

    Google Scholar 

  86. Khalajabadia SZ, Abdul Kadira MR, Bakhsheshi HR, Farahany S et al (2014) Effect of mechanical alloying on the phase evolution, microstructure and bio-corrosion properties of a Mg/HA/TiO2/MgO nanocomposite. Ceram Int 40:16743–16759

    Google Scholar 

  87. Lia JX, Zhanga Y, Xie JX et al (2018) Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg–2Zn–0.5Sr alloy. J Mater Sci Technol 34:299–310

    Google Scholar 

  88. Aboudzadeh N, Ali SM et al (2018) In vitro degradation and cytotoxicity of Mg − 5Zn − 0.3Ca/nHA biocomposites prepared by powder metallurgy. Trans Nonferrous Metall Soc China 28:1745–1754

    CAS  Google Scholar 

  89. Gill P et al (2012) Characterization and degradation behaviour of anodized magnesium-hydroxyapatite metal matrix composites. J Biomimetics Biomater Tissue Eng 16:55–69

    CAS  Google Scholar 

  90. Ma C, Chen L, Zheng J et al (2013) Effect of fabrication and processing technology on the biodegradability of magnesium nanocomposites. J Biomed Mater Res Part B 101:870–877

    Google Scholar 

  91. Nakka K, Chikkala N, Buradagunta S et al (2018) Developing composites of ZE41 Mg alloy-naturally derived hydroxyapatite by friction stir processing: investigating in vitro degradation behavior. Mater Technol 33:603–611

    CAS  Google Scholar 

  92. Ramya M, Pillai MM, Raj B, Ravi KR et al (2018) Hydroxyapatite particle (HAp) reinforced biodegradable Mg–Zn–Ca metallic glass composite for bio-implant applications. Biomed Phys Eng Express 4:25–39

    Google Scholar 

  93. Bohner M, Lemaitre J et al (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179

    CAS  Google Scholar 

  94. Zhao J, Yu MZ, Chen LJ et al (2011) Biodegradable behaviors of Mg–6%Zn–5% hydroxyapatite biomaterial. Adv Mater Res 239–242:1287–1291

    Google Scholar 

  95. Collier T, Jenney CR, Anderson JM et al (1997) Protein adsorption on chemically modified surfaces. Biomed Sci Instrum 33:178–183

    CAS  Google Scholar 

  96. Seal CK, Vince K, Hodgson MA et al (2009) Biodegradable surgical implants based on magnesium alloys- a review of current research. IOP Conf Ser Mater Sci Eng 4:06–011

    Google Scholar 

  97. Oliva J, Cama J, Cortina JL, Ayora C, De Pablo J et al (2012) Biogenic hydroxyapatite (Apatite II™) dissolution kinetics and metal removal from acid mine drainage. J Hazard Mater 213:7–18

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Ms. Swati Haldar from Centre of Nanotechnology of Indian Institute of Technology Roorkee, for her help and support in understanding of biological studies. D.L. acknowledges funding from the Department of Science and Technology, India (SB/SO/HS/138/2013). The figures from other articles have been reproduced in this review with permission from the respective publishers and the appropriate citation is mentioned using reference numbers in figure captions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debrupa Lahiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, S., Dubey, A. & Lahiri, D. In Vitro Biodegradation and Biocompatibility of Mg–HA-Based Composites for Orthopaedic Applications: A Review. J Indian Inst Sci 99, 303–327 (2019). https://doi.org/10.1007/s41745-019-00124-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00124-w

Navigation