Skip to main content
Log in

Diversity and Expression Patterns of MADS-Box Genes in Gnetum luofuense—Implications for Functional Diversity and Evolution

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

MADS-box transcription factors are essential mediators of the vegetative and reproductive development of seed plants. Although MADS-box genes have been extensively characterized in angiosperms, their functions are not well-understood in gymnosperms, especially the Gnetales, due to an ambiguous phylogeny of seed plants. Here, we performed a genome-wide search for MADS-box genes in Gnetum luofuense and found 11 Type I and 38 Type II MADS-box members (i.e. three MIKC* and 35 MIKCc genes). The relative abundance of the Type I Mα and Type II MIKCC subgroups (including the DEF/GLO and TM8-like genes) were mainly contributed by tandem duplications. Comparisons of the gene expression levels among members of the MIKCc subgroup reveal that the DEF/GLO-like genes and several TM8-like genes were exclusively expressed in reproductive organs, whereas TM3-like, StMADS11-like and other TM8-like genes exhibited a broad expression pattern in both vegetative and reproductive organs in G. luofuense. In addition, 14 Type II MIKCc genes were found in the stem transcriptome of Ephedra equisetina and we made an attempt to assess the homology to the MIKCc genes within Gnetales. The results of this study provide valuable information for understanding the phylogenies and functions of MADS-box genes in seed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

K-domain:

Keratin-like domains

MEF:

myocyte enhancer factor

ML:

maximum likelihood

TF:

transcription factors

SRF:

serum response factor

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    CAS  PubMed  Google Scholar 

  • Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149:1713–1723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albert VA, Barbazuk WB, Der JP, Leebens-Mack J, Ma H, Palmer JD, Rounsley S, Sankoff D, Schuster SC, Soltis DE (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, De Pouplana LR, Martínez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97:5328–5333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

    PubMed  PubMed Central  Google Scholar 

  • Becker A, Winter KU, Meyer B, Saedler H, Theissen G (2000) MADS-box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425–1434

    CAS  PubMed  Google Scholar 

  • Becker A, Saedler H, Theissen G (2003) Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol 213:567–572

    CAS  PubMed  Google Scholar 

  • Burgeff C, Liljegren SJ, Tapia-López R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214:365–372

    CAS  PubMed  Google Scholar 

  • Carlsbecker A, Sundstrom JF, Englund M, Uddenberg D, Izquierdo L, Kvarnheden A, Vergara-Silva F, Engstrom P (2013) Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. New Phytol 200:261–275

    CAS  PubMed  Google Scholar 

  • Carmona MJ, Ortega N, Garcia-Maroto F (1998) Isolation and molecular characterization of a new vegetative MADS-box gene from Solanum tuberosum L. Planta 207:181–188

    CAS  PubMed  Google Scholar 

  • Chen F, Zhang XT, Liu X, Zhang LS (2017) Evolutionary analysis of MIKCc-type MADS-box genes in gymnosperms and angiosperms. Front Plant Sci 8:895

    PubMed  PubMed Central  Google Scholar 

  • Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, Colombo L (2008) AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54:1037–1048

    CAS  PubMed  Google Scholar 

  • Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Missouri Bot Gard 72:716–793

    Google Scholar 

  • Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148:1964–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Hoon, M., S. Imoto, and S. Miyano, 2002. Cluster 3.0. Human genome center, University of Tokyo, Tokyo, Japan

  • Decroocq V, Zhu X, Kauffman M, Kyozuka J, Peacock WJ, Dennis ES, Llewellyn DJ (1999) A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228:155–160

    CAS  PubMed  Google Scholar 

  • Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52:321–431

    Google Scholar 

  • Duan, Weike, et al. "Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage)." Molecular genetics and genomics 290.1 (2015): 239-255

    PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endress PK (1996) Structure and function of female and bisexual organ complexes in Gnetales. Int J Pl Sci 157:113–125

    Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37

    Google Scholar 

  • Garcia-Maroto F, Carmona MJ, Garrido JA, Vilches-Ferron M, Rodriguez-Ruiz J, Alonso DL (2003) New roles for MADS-box genes in higher plants. Biol Plant 46:321–330

    CAS  Google Scholar 

  • Gramzow L, Theissen G (2010) A hitchhiker's guide to the MADS world of plants. Genome Biol 11:214

    PubMed  PubMed Central  Google Scholar 

  • Gramzow L, Weilandt L, Theissen G (2014) MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants. Ann Bot 114:1407–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu S-H (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hileman LC, Sundstrom JF, Litt A, Chen MQ, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23:2245–2258

    CAS  PubMed  Google Scholar 

  • Hou C, Humphreys AM, Thureborn O, Rydin C (2015) New insights into the evolutionary history of Gnetum (Gnetales). Taxon 64:239–253

    Google Scholar 

  • Hou C, Wikström N, Strijk J, Rydin C (2016) Resolving phylogenetic relationships and species delimitations in closely related gymnosperms using high-throughput NGS, sanger sequencing and morphology. Plant Syst Evol 302:1345–1365

    Google Scholar 

  • Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, Busscher-Lange J, Borst JW, Angenent GC (2009) SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biol 10:R24

    PubMed  PubMed Central  Google Scholar 

  • Jörgensen A, Rydin C (2015) Reproductive morphology in the Gnetum cuspidatum group (Gnetales) and its implications for pollination biology in the Gnetales. Plant Ecol Evol 148:387–396

    Google Scholar 

  • Katahata SI, Futamura N, Igasaki T, Shinohara K (2014) Functional analysis of SOC1-like and AGL6-like MADS-box genes of the gymnosperm Cryptomeria japonica. Tree Genet Genomes 10:317–327

    Google Scholar 

  • Kim S-H, Hamada T, Otani M, Shimada T (2005) Isolation and characterization of MADS box genes possibly related to root development in sweetpotato (Ipomoea batatas L. lam.). J Plant Biol 48:387–393

    CAS  Google Scholar 

  • Kubitzki, K. (1990a) Gnetaceae. In: K. U. Kramer and P. S. Green (eds), The families and genera of vascular plants. Springer, Berlin, Heidelberg, Germany. pp383–386

  • Kubitzki, K. (1990b) General traits of the Gnetales. In: K. U. Kramer and P. S. Green (eds), The families and genera of vascular plants. Springer, Berlin, Heidelberg. pp378–379

  • Kwantes M, Liebsch D, Verelst W (2012) How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol Biol Evol 29:293–302

    CAS  PubMed  Google Scholar 

  • Lee S, Woo Y-M, Ryu S-I, Shin Y-D, Kim WT, Park KY, Lee I-J, An G (2008) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147:156–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G (2012) Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Mol Biol Evol 29:409–419

    CAS  PubMed  Google Scholar 

  • Markgraf F (1930) Monographie der Gattung Gnetum Ser. 3. Bull Jard Bot Buitenzorg 10:407–511

    Google Scholar 

  • Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23:865–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer R, Wang YQ, Theissen G (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 21:118–128

    CAS  PubMed  Google Scholar 

  • Moyroud E, Monniaux M, Thevenon E, Dumas R, Scutt CP, Frohlich MW, Parcy F (2017) A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytol 216:469–481

    CAS  PubMed  Google Scholar 

  • Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci U S A 101:1910–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price RA (1996) Systematics of the Gnetales: a review of morphological and molecular evidence. Int J Pl Sci 157:40–49

    Google Scholar 

  • Ran JH, Shen TT, Wang MM, Wang XQ (2018) Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. P Roy Soc B-Biol Sci 285:20181012

    Google Scholar 

  • Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20:3246–3248

    CAS  PubMed  Google Scholar 

  • Shen G, Yang C-H, Shen C-Y, Huang K-S (2019) Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms. Biol Res 52:25

    PubMed  PubMed Central  Google Scholar 

  • Shindo S, Ito M, Ueda K, Kato M, Hasebe M (1999) Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev 1:180–190

    CAS  PubMed  Google Scholar 

  • Shindo S, Sakakibara K, Sano R, Ueda K, Hasebe M (2001) Characterization of a FLORICAULA/LEAFY homologue of Gnetum parvifolium and its implications for the evolution of reproductive organs in seed plants. Int J Pl Sci 162:1199–1209

    CAS  Google Scholar 

  • Smaczniak C, Immink RG, Angenent GC, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081–3098

    CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, Kim S-H, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146:1182–1192

    PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Josefsson C, Dilkes B, Kirkbride R, Harada J, Comai L (2009) Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 19:1128–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan T et al (2018) A genome for gnetophytes and early evolution of seed plants. Nat Plants 4:82–89

    CAS  PubMed  Google Scholar 

  • Wang YQ, Melzer R, Theissen G (2010) Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'. Plant J 64:177–190

    CAS  PubMed  Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 111:4859–4868

    Google Scholar 

  • Winter KU, Becker A, Munster T, Kim JT, Saedler H, Theissen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci U S A 96:7342–7347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci U S A 100:10824–18029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Won H, Renner SS (2006) Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales) - clock calibration when outgroup relationships are uncertain. Syst Biol 55:610–622

    PubMed  Google Scholar 

  • Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenfuhrer J, von Mering C, Grossniklaus U (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    CAS  PubMed  Google Scholar 

  • Zhao T, Holmer R, de Bruijn S, Angenent GC, van den Burg HA, Schranz ME (2017) Phylogenomic synteny network analysis of MADS-box transcription factor genes reveals lineage-specific transpositions, ancient tandem duplications, and deep positional conservation. Plant Cell 29:1278–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zobell O, Faigl W, Saedler H, Munster T (2010) MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants. Mol Biol Evol 27:1201–1211

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zheng Li from the University of Arizona (USA) for his constructive comments on an early version of this manuscript. We also thank the two reviewers of this manuscript for the valuable comments. We also thank Dr. Min Yang and Dr. Yiying Liao from Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science for providing valuable technical and analytical assistance.

Funding

This work was funded by the Scientific Project of Shenzhen Urban Administration (201519) and a Major Technical Research Project from the Innovation of Science and Technology Commission of Shenzhen (JSGG20140515164852417). Additional funding was provided by the Scientific Research Program of the Sino-Africa Joint Research Centre (SAJL201607).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: Conceptualization, C.H. and T.W.; Funding acquisition, T.W.; Investigation, L.L. and Z.L.; Methodology, Z.L.; Project administration, T.W.; Resources, Y.S. and T.W.; Software, L.L. and Z.L.; Supervision, Y.S. and T.W.; Writing – original draft, C.H.; Writing – review & editing, C.H. and T.W. All authors contributed to the drafts and gave final approval for publication.

Corresponding authors

Correspondence to Yingjuan Su or Tao Wan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Marcelo C. Dornelas

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(FASTA 10 kb)

ESM 2

(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Li, L., Liu, Z. et al. Diversity and Expression Patterns of MADS-Box Genes in Gnetum luofuense—Implications for Functional Diversity and Evolution. Tropical Plant Biol. 13, 36–49 (2020). https://doi.org/10.1007/s12042-019-09247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-019-09247-x

Keywords

Navigation