Skip to main content
Log in

Artificial Neural Network Modeling of Cr(VI) Biosorption from Aqueous Solutions

  • Theoretical Principles of Water Treatment Technology
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

Artificial neural network (ANN) model was applied for predicting the biosorption capacity of excess municipal wastewater sludge for hexavalent chromium (Cr(VI)) ions from aqueous solution. The effects of initial concentration (5 to 90 mg/L), adsorbent dosage (2 to 10 g/L), initial pH (2 to 8), agitation speed (50 to 200 rpm) and agitation time (5 to 480 min) were investigated. The maximum amount of chromium removal was about 96% in optimum conditions. The experimental results were simulated using ANN model. Levenberg-Marquardt algorithm was used for the training of this network with tangent sigmoid as transfer function at hidden and output layer with 13 and 1 neurons, respectively. The applied model successfully predicted Cr(VI) biosorption capacity. The average mean square error is 0.00401 and correlation coefficient between predicted removal rate and experimental results is 0.9833.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong, Q Q., Yue, Q Y., Li, Q., et al., Carbohydr. Polym., 2014, vol. 111 no. 788, pp. 788–796.

    Article  CAS  Google Scholar 

  2. Malakootian, M., Dowlatshahi, Sh., and Hashemi, M., J. Mazandaran Univ. Med. Sci., 2013, vol. 23, pp. 69–78.

    Google Scholar 

  3. Meziane, F., Raimbault, V., Hallil, H., et al, Sens. Actuators, B., 2015, vol. 209, no. 1049, pp. 1–22.

    Google Scholar 

  4. Chakraborty, S., Dasgupta, J., Farooq, U., et al, J. Membr. Sci., 2014, vol. 456, no. 139, pp. 139–154.

    Article  CAS  Google Scholar 

  5. Choppala, G., Bolan, N., and Park, G., Adv. Agron., 2013, vol. 120, no. 129, pp. 129–172.

    Article  CAS  Google Scholar 

  6. Shi, M., Li, Z., Yuan, Y., et al., Chem. Eng. J., 2015, vol. 265, no. 84, pp. 84–92.

    Article  CAS  Google Scholar 

  7. Ullah, I., Nadeem, R., Iqbal, M., and Manzoor, Q., Ecol. Eng., 2013, vol. 60, no. 99, pp. 99–107.

    Article  Google Scholar 

  8. Hegazi, H., HBRC J., 2013, vol. 9, no. 3, pp. 276–282.

    Article  Google Scholar 

  9. Ahmad, M., Haydar, S., Bhatti, A., and Bari, A., Biochem. Eng. J., 2014, vol. 84, no. 83, pp. 83–90.

    Article  CAS  Google Scholar 

  10. Yetilmezsoy K. and Demirel, S., J. Hazard. Mater., 2008, 153, no. 1288, pp. 1288–1300.

    Article  CAS  Google Scholar 

  11. Bagheri, M., Mirbagheri, S., Bagheri, Z., and Kamarkhani, A., Process Saf. Environ. Prot., 2015, vol. 95, no. 12, pp. 1–47.

    Google Scholar 

  12. Ding, Y R., Cai, Y J., Sun, P D., and Chen, B., J. Appl. Res. Technol., 2014, vol. 12, no. 3, pp. 493–499.

    Article  Google Scholar 

  13. Joo, S., Yoon, J., Kim, J., et al., Appl. Therm. Eng., 2015, vol. 80, no. 5, pp. 436–444.

    Article  CAS  Google Scholar 

  14. Bunsana, S., Chenc, W., Chenc, H., et al., Chemosphere, 2013, vol. 92, no. 3, pp. 258–264.

    Article  CAS  Google Scholar 

  15. Yang, Y., Wang, G., Wang, B., et al., Biores. Technol., 2011, vol. 102, pp. 828–834.

    Article  CAS  Google Scholar 

  16. Fopa, M., Ileana, I., Vosniako, F., et al, J. Environ. Prot. Ecol., 2011, vol. 12, no. 4, pp. 1948–1953.

    Google Scholar 

  17. Demir, G., Ozdemir, H., Ozcan, H K., et al., J. Environ. Prot. Ecol., 2010, vol. 11, no. 3, pp. 1163–1171.

    Google Scholar 

  18. Adeyinka, A., Llang, H., and Tina, G., Scholl Eng. Technol., 2007, vol. 33, no. 2, pp. 1–8.

    Google Scholar 

  19. APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington: Amer. Publ. Health Assoc., 2005.

  20. Shanmugaprakash, M. and Sivakumar, V., Biores. Technol., 2013, vol. 148, pp. 550–559.

    Article  CAS  Google Scholar 

  21. Rafiq, M. Y., Bugmann, G., and Easterbrook, D J., Comput. Struct., 2001, vol. 79, no. 17, pp. 1541–1552.

    Article  Google Scholar 

  22. Ozdemir, U., Azbay, B., Veli, S., and Zor, S., Chem. Eng. J., 2011, vol. 178, no. 183, pp. 183–190.

    Article  CAS  Google Scholar 

  23. Hegan, M. and Menhaj, H., IEEE Transactions on neural network, 1994, vol. 5, no. 6, pp. 989–993.

    Article  Google Scholar 

  24. Giri, A., Patel, A., and Mahapatra, S., Chem. Eng. J., 2011, vol. 178, no. 15, pp. 15–25.

    Article  CAS  Google Scholar 

  25. Moreira, M. and Fiesler, E., IDIAP Res. Institute, Valais, Switzerland, 1995, pp. 1–29.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Environment Research Center, Isfahan University of Medical Science, Isfahan, Iran, and Department of Environmental Health Engineering, School of Health, Research Center, Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Hashemi.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, F., Yavari, Z., Rahimi, S. et al. Artificial Neural Network Modeling of Cr(VI) Biosorption from Aqueous Solutions. J. Water Chem. Technol. 41, 219–227 (2019). https://doi.org/10.3103/S1063455X19040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X19040039

Keywords

Navigation