Skip to main content
Log in

Niches of Hematopoietic Stem Cells in Bone Marrow

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells (HSCs) exist in a close contact with their specific microenvironment, called a niche, which supports the HSC function and significantly influences the HSC properties. The existence of the HSC niche, which was proposed as a purely theoretical concept in 1978, finds increasing experimental evidence and is now generally accepted by specialists in the field of hematopoiesis. The review briefly describes various cell components of the HSC niche in bone marrow, considers the metabolic states of the niche and HSCs, and discusses other aspects of niche biology. Increasing knowledge of the HSC niche will help to create in vitro cell models of the HSC niche, to modulate the HSC properties, and to achieve multifold HSC expansion in culture for further applications in therapeutic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Maximov A.A. 1909. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. Folia Haematol.8, 125–134.

    Google Scholar 

  2. Becker A.J., McCulloch E.A., Till J.E. 1963. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 197, 452–454.

    Article  CAS  PubMed  Google Scholar 

  3. Schofield R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 4 (1–2), 7–25.

    CAS  PubMed  Google Scholar 

  4. Zhang J., Niu C., Ye L., Huang H., He X., Tong W.G., Ross J., Haug J., Johnson T., Feng J.Q., Harris S., Wiedemann L.M., Mishina Y., Li L. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 425 (6960), 836–841.

    Article  CAS  PubMed  Google Scholar 

  5. Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., Martin R.P., Schipani E., Divieti P., Bringhurst F.R., Milner L.A., Kronenberg H.M., Scadden D.T. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 425 (6960), 841–846.

    Article  CAS  PubMed  Google Scholar 

  6. Visnjic D., Kalajzic Z., Rowe D.W., Katavic V., Lorenzo J., Aguila H.L. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 103 (9), 3258–3264.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu J., Garrett R., Jung Y., Zhang Y., Kim N., Wang J., Joe G.J., Hexner E., Choi Y., Taichman R.S., Emerson S.G. 2007. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood. 109 (9), 3706–3712.

    Article  CAS  PubMed  Google Scholar 

  8. Kiel M.J., Yilmaz O.H., Iwashita T., Yilmaz O.H., Terhorst C., Morrison S.J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121 (7), 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  9. Friedenstein A.J., Deriglasova U.F., Kulagina N.N., Panasuk A.F., Rudakowa S.F., Luriá E.A., Ruadkow I.A. 1974. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 2 (2), 83–92.

    CAS  PubMed  Google Scholar 

  10. Chan C.K., Chen C.C., Luppen C.A., Kim J.B., DeBoer A.T., Wei K., Helms J.A., Kuo C.J., Kraft D.L., Weissman I.L. 2009. Endochondral ossification is required for hematopoietic stem-cell niche formation. Nature. 457 (7228), 490–494.

    Article  CAS  PubMed  Google Scholar 

  11. Sacchetti B., Funari A., Michienzi S., Di Cesare S., Piersanti S., Saggio I., Tagliafico E., Ferrari S., Robey P.G., Riminucci M., Bianco P. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 131 (2), 324–336.

    Article  CAS  PubMed  Google Scholar 

  12. Méndez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., Lira S.A., Scadden D.T., Ma’ayan A., Enikolopov G.N., Frenette P.S. 2010. Mesenchymal and hematopoietic stem cells form a unique bone marrow niche. Nature. 466 (7308), 829–834.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Katayama Y., Battista M., Kao W.M., Hidalgo A., Peired A.J., Thomas S.A., Frenette P.S. 2006. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell.124 (2), 407–421.

    Article  CAS  PubMed  Google Scholar 

  14. Omatsu Y., Sugiyama T., Kohara H., Kondoh G., Fujii N., Kohno K., Nagasawa T. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 33 (3), 387–399.

    Article  CAS  PubMed  Google Scholar 

  15. Ding L., Saunders T.L., Enikolopov G., Morrison S.J. 2012. Endothelial and perivascular cells maintain hematopoietic stem cells. Nature. 481 (7382), 457–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou B.O., Yue R., Murphy M.M., Peyer J.G., Morrison S.J. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 15 (2), 154–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kunisaki Y., Bruns I., Scheiermann C., Ahmed J., Pinho S., Zhang D., Mizoguchi T., Wei Q., Lucas D., Ito K., Mar J.C., Bergman A., Frenette P.S. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 502 (7473), 637–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asada N., Kunisaki Y., Pierce H., Wang Z., Fernandez N.F., Birbrair A., Ma’ayan A., Frenette P.S. 2017. Differential cytokine contributions of perivascular hematopoietic stem cell niches. Nat. Cell. Biol. 19 (3), 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hooper A.T., Butler J.M., Nolan D.J., Kranz A., Iida K., Kobayashi M., Kopp H.G., Shido K., Petit I., Yanger K., James D., Witte L., Zhu Z., Wu Y., Pytowski B., et al. 2009. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell. 4 (3), 263–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Himburg H.A., Harris J.R., Ito T., Daher P., Russell J.L., Quarmyne M., Doan P.L., Helms K., Nakamura M., Fixsen E., Herradon G., Reya T., Chao N.J., Harroch S., Chute J.P. 2012. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2 (4), 964–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Himburg H.A., Termini C.M., Schlussel L., Kan J., Li M., Zhao L., Fang T., Sasine J.P., Chang V.Y., Chute J.P. 2018. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell.23 (3), 370–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chow A., Lucas D., Hidalgo A., Méndez-Ferrer S., Hashimoto D., Scheiermann C., Battista M., Leboeuf M., Prophete C., van Rooijen N., Tanaka M., Merad M., Frenette P.S. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med.208 (2), 261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Albiero M., Poncina N., Ciciliot S., Cappellari R., Menegazzo L., Ferraro F., Bolego C., Cignarella A., Avogaro A., Fadini G.P. 2015. Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M. Diabetes.64 (8), 2957–2968.

    Article  CAS  PubMed  Google Scholar 

  24. Ludin A., Itkin T., Gur-Cohen S., Mildner A., Shezen E., Golan K., Kollet O., Kalinkovich A., Porat Z., D’Uva G., Schajnovitz A., Voronov E., Brenner D.A., Apte R.N., Jung S., Lapidot T. 2012. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13 (11), 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  25. Winkler I.G., Sims N.A., Pettit A.R., Barbier V., Now-lan B., Helwani F., Poulton I.J., van Rooijen N., Alexander K.A., Raggatt L.J., Lévesque J.P. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 116 (23), 4815–4828.

    Article  CAS  PubMed  Google Scholar 

  26. Kollet O., Dar A., Shivtiel S., Kalinkovich A., Lapid K., Sztainberg Y., Tesio M., Samstein R.M., Goichberg P., Spiegel A., Elson A., Lapidot T. 2006. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12 (6), 657–664.

    Article  CAS  PubMed  Google Scholar 

  27. Bruns I., Lucas D., Pinho S., Ahmed J., Lambert M.P., Kunisaki Y., Scheiermann C., Schiff L., Poncz M., Bergman A., Frenette P.S. 2014. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20 (11), 1315–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao M., Perry J.M., Marshall H., Venkatraman A., Qian P., He X.C., Ahamed J., Li L. 2014. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20 (11), 1321–1326.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura-Ishizu A., Takubo K., Fujioka M., Suda T. 2014. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem. Biophys. Res. Commun.454 (2), 353–357.

    Article  CAS  PubMed  Google Scholar 

  30. Fujisaki J., Wu J., Carlson A.L., Silberstein L., Putheti P., Larocca R., Gao W., Saito T.I., Lo Celso C., Tsuyuzaki H., Sato T., Côté D., Sykes M., Strom T.B., Scadden D.T., Lin C.P. 2011. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 474 (7350), 216–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirata Y., Furuhashi K., Ishii H., Li H.W., Pinho S., Ding L., Robson S.C., Frenette P.S., Fujisaki J. 2018. CD150high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell. 22 (3), 445–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schürch C.M., Riether C., Ochsenbein A.F. 2014. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell. 14 (4), 460–472.

    Article  PubMed  CAS  Google Scholar 

  33. Suda T., Takubo K., Semenza G.L. 2011. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9 (4), 298–310.

    Article  CAS  PubMed  Google Scholar 

  34. Parmar K., Mauch P., Vergilio J.A., Sackstein R., Down J.D. 2007. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. U. S. A.104 (13), 5431–5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takubo K., Goda N., Yamada W., Iriuchishima H., Ikeda E., Kubota Y., Shima H., Johnson R.S., Hirao A., Suematsu M., Suda T. 2010. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 7 (3), 391–402.

    Article  CAS  PubMed  Google Scholar 

  36. Vukovic M., Sepulveda C., Subramani C., Guitart A.V., Mohr J., Allen L., Panagopoulou T.I., Paris J., Lawson H., Villacreces A., Armesilla-Diaz A., Gezer D., Holyoake T.L., Ratcliffe P.J., Kranc K.R. 2016. Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood. 127 (23), 2841–2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takubo K., Nagamatsu G., Kobayashi C.I., Nakamura-Ishizu A., Kobayashi H., Ikeda E., Goda N., Rahimi Y., Johnson R.S., Soga T., Hirao A., Suematsu M., Suda T. 2013. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 12 (1), 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., Yusuf R., Côté D., Vinogradov S.A., Scadden D.T., Lin C.P. 2014. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 508 (7495), 269–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zuo L., Zhou T., Pannell B.K., Ziegler A.C., Best T.M. 2015. Biological and physiological role of reactive oxygen species—the good, the bad and the ugly. Acta Physiol. (Oxford). 214 (3), 329–348

    Article  CAS  Google Scholar 

  40. Juntilla M.M., Patil V.D., Calamito M., Joshi R.P., Birnbaum M.J., Koretzky G.A. 2010. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood. 115 (20), 4030–4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ito K., Hirao A., Arai F., Matsuoka S., Takubo K., Hamaguchi I., Nomiyama K., Hosokawa K., Sakurada K., Nakagata N., Ikeda Y., Mak T.W., Suda T. 2004. Regulation of oxidative stress by ATM is required for self-renewal of hematopoietic stem cells. Nature. 431 (7011), 997–1002.

    Article  CAS  PubMed  Google Scholar 

  42. Miyamoto K., Araki K.Y., Naka K., Arai F., Takubo K., Yamazaki S., Matsuoka S., Miyamoto T., Ito K., Ohmura M., Chen C., Hosokawa K., Nakauchi H., Nakayama K., Nakayama K.I., et al. 2007. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 1 (1), 101–112.

    Article  CAS  PubMed  Google Scholar 

  43. Warr M.R., Binnewies M., Flach J., Reynaud D., Garg T., Malhotra R., Debnath J., Passegué E. 2013. FOXO3A directs a protective autophagy program in hematopoietic stem cells. Nature. 494 (7437), 323–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ludin A., Gur-Cohen S., Golan K., Kaufmann K.B., Itkin T., Medaglia C., Lu X.J., Ledergor G., Kollet O., Lapidot T. 2014. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid. Redox Signal. 21 (11), 160–1619.

    Article  CAS  Google Scholar 

  45. Tesio M., Golan K., Corso S., Giordano S., Schajnovitz A., Vagima Y., Shivtiel S., Kalinkovich A., Caione L., Gammaitoni L., Laurenti E., Buss E.C., Shezen E., Itkin T., Kollet O., et al. 2011. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood. 117 (2), 419–428.

    Article  CAS  PubMed  Google Scholar 

  46. Zalba G., Fortuño A., Orbe J., San José G., Moreno M.U., Belzunce M., Rodríguez J.A., Beloqui O., Páramo J.A., Díez J. 2007. Phagocytic NADPH oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: Implications for human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27 (3), 587–593.

    Article  CAS  PubMed  Google Scholar 

  47. Walkley C.R., Olsen G.H., Dworkin S., Fabb S.A., Swann J., McArthur G.A., Westmoreland S.V., Chambon P., Scadden D.T., Purton L.E. 2007. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell. 129 (6), 1097–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim Y.W., Koo B.K., Jeong H.W., Yoon M.J., Song R., Shin J., Jeong D.C., Kim S.H., Kong Y.Y. 2008. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood. 112 (12), 4628–4638.

    Article  CAS  PubMed  Google Scholar 

  49. Sipkins D.A., Wei X., Wu J.W., Runnels J.M., Côté D., Means T.K., Luster A.D., Scadden D.T., Lin C.P. 2005. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 435 (7044), 969–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pitt L.A., Tikhonova A.N., Hu H., Trimarchi T., King B., Gong Y., Sanchez-Martin M., Tsirigos A., Littman D.R., Ferrando A.A., Morrison S.J., Fooksman D.R., Aifantis I., Schwab S.R. 2015. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell. 27 (6), 755–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Janel A., Dubois-Galopin F., Bourgne C., Berger J., Tarte K., Boiret-Dupré N., Boisgard S., Verrelle P., Déchelotte P., Tournilhac O., Berger M.G. 2014. The chronic lymphocytic leukemia clone disrupts the bone marrow microenvironment. Stem Cells Dev. 23 (24), 2972–2982.

    Article  CAS  PubMed  Google Scholar 

  52. Vanegas N.P., Vernot J.P. 2017. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp. Hematol. Oncol. 6, 2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Pinho S., Marchand T., Yang E., Wei Q., Nerlov C., Frenette P.S. 2018. Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev. Cell.44 (5), 634–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ding L., Morrison S.J. 2013. Hematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 495 (7440), 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greenbaum A., Hsu Y.M., Day R.B., Schuettpelz L.G., Christopher M.J., Borgerding J.N., Nagasawa T., Link D.C. 2013. CXCL12 in early mesenchymal progenitors is required for hematopoietic stem-cell maintenance. Nature. 495 (7440), 227—230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hérault A., Binnewies M., Leong S., Calero-Nieto F.J., Zhang S.Y., Kang Y.A., Wang X., Pietras E.M., Chu S.H., Barry-Holson K., Armstrong S., Göttgens B., Passegué E. 2017. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 544 (7648), 53–58.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Shimoto M., Sugiyama T., Nagasawa T. 2017. Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood. 129 (15), 2124–2131.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-14-00300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyavsky.

Ethics declarations

The author declares that he has no conflict of interest. This article does not contain any studies involving animals or human subjects performed by the author.

Additional information

Translated by T. Tkacheva

Abbreviations: HSC, hematopoietic stem cell; BM, bone marrow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyavsky, A.V. Niches of Hematopoietic Stem Cells in Bone Marrow. Mol Biol 53, 889–895 (2019). https://doi.org/10.1134/S0026893319060025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060025

Keywords:

Navigation