Skip to main content
Log in

Decentralized hierarchical constrained convex optimization

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a decentralized optimization algorithm for the triple-hierarchical constrained convex optimization problem of minimizing a sum of strongly convex functions subject to a paramonotone variational inequality constraint over an intersection of fixed point sets of nonexpansive mappings. The existing algorithms for solving this problem are centralized optimization algorithms using all the information in the problem, and these algorithms are effective, but only under certain additional restrictions. The main contribution of this paper is to present a convergence analysis of the proposed algorithm in order to show that the proposed algorithm using incremental gradients with diminishing step-size sequences converges to the solution to the problem without any additional restrictions. Another contribution of this paper is the elucidation of the practical applications of hierarchical constrained optimization in the form of network resource allocation and optimal control problems. In particular, it is shown that the proposed algorithm can be applied to decentralized network resource allocation with a triple-hierarchical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. (C2) and \(\lambda _n \le \alpha _n\)\((n\in {\mathbb {N}})\) imply (C1).

  2. Since \(\epsilon > 0\) is sufficiently small, we have that \(f(X) \approx - \mathrm {Tr}(X)\)\((X \in {\mathcal {S}}^{N + N_u})\) in the sense of the norm of \({\mathbb {R}}\). Hence, we can expect that the unique solution \(X^\star \) to problem (45) is almost the same as the unique minimizer of f over \({\mathcal {C}}_g\).

References

  • Attouch H (1996) Viscosity solutions of minimization problems. SIAM J Optim 6:769–806

    MathSciNet  MATH  Google Scholar 

  • Baillon JB, Haddad G (1977) Quelques propriétés des opérateurs angle-bornés et \(n\)-cycliquement monotones. Isr J Math 26:137–150

    MATH  Google Scholar 

  • Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York

    MATH  Google Scholar 

  • Berinde V (2007) Iterative approximation of fixed points. Springer, Berlin

    MATH  Google Scholar 

  • Bertsekas DP (2011) Incremental proximal methods for large scale convex optimization. Math Program 129:163–195

    MathSciNet  MATH  Google Scholar 

  • Bertsekas DP, Nedić A, Ozdaglar AE (2003) Convex analysis and optimization. Athena Scientific, Cambridge

    MATH  Google Scholar 

  • Browder FE, Petryshyn WV (1967) Construction of fixed points of nonlinear mappings in Hilbert space. J Math Anal Appl 20:197–228

    MathSciNet  MATH  Google Scholar 

  • Cabot A (2005) Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization. SIAM J Optim 15:555–572

    MathSciNet  MATH  Google Scholar 

  • Censor Y, Iusem AN, Zenios S (1998) An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math Program 81:373–400

    MathSciNet  MATH  Google Scholar 

  • Chen S, Li X, Zhou XY (1998) Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J Control Optim 36:1685–1702

    MathSciNet  MATH  Google Scholar 

  • Combettes PL (2003) A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans Signal Process 51:1771–1782

    MathSciNet  MATH  Google Scholar 

  • Combettes PL, Bondon P (1999) Hard-constrained inconsistent signal feasibility problems. IEEE Trans Signal Process 47:2460–2468

    MATH  Google Scholar 

  • Cominetti R, Courdurier M (2005) Coupling general penalty schemes for convex programming with the steepest descent and the proximal point algorithm. SIAM J Optim 13:745–765

    MathSciNet  MATH  Google Scholar 

  • Ekeland I, Témam R (1999) Convex analysis and variational problems. Classics in applied mathematics, vol 28. SIAM, Philadelphia

    MATH  Google Scholar 

  • Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems I. Springer, New York

    MATH  Google Scholar 

  • Goebel K, Kirk WA (1990) Topics in metric fixed point theory. Cambridge studies in advanced mathematics. Cambridge University Press, New York

    MATH  Google Scholar 

  • Grigoriadis KM, Skelton RE (1996) Alternating convex projection methods for discrete-time covariance control design. J Optim Theory Appl 88:399–432

    MathSciNet  MATH  Google Scholar 

  • Halpern B (1967) Fixed points of nonexpanding maps. Bull Am Math Soc 73:957–961

    MathSciNet  MATH  Google Scholar 

  • Helou Neto E, De Pierro A (2009) Incremental subgradients for constrained convex optimization: a unified framework and new methods. SIAM J Optim 20:1547–1572

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2011) Iterative algorithm for solving triple-hierarchical constrained optimization problem. J Optim Theory Appl 148:580–592

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2012) Fixed point optimization algorithm and its application to power control in CDMA data networks. Math Program 133:227–242

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2012) Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation. SIAM J Optim 22:862–878

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2013) Fixed point optimization algorithms for distributed optimization in networked systems. SIAM J Optim 23:1–26

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2015) Acceleration method for convex optimization over the fixed point set of a nonexpansive mapping. Math Program 149:131–165

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2016a) Convergence analysis of iterative methods for nonsmooth convex optimization over fixed point sets of quasi-nonexpansive mappings. Math Program 159:509–538

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2016b) Proximal point algorithms for nonsmooth convex optimization with fixed point constraints. Eur J Oper Res 253:503–513

    MathSciNet  MATH  Google Scholar 

  • Iiduka H (2018) Distributed optimization for network resource allocation with nonsmooth utility functions. IEEE Trans Control Netw Syst (accepted for publication)

  • Iiduka H, Hishinuma K (2014) Acceleration method combining broadcast and incremental distributed optimization algorithms. SIAM J Optim 24:1840–1863

    MathSciNet  MATH  Google Scholar 

  • Iiduka H, Uchida M (2011) Fixed point optimization algorithms for network bandwidth allocation problems with compoundable constraints. IEEE Commun Lett 15:596–598

    Google Scholar 

  • Iiduka H, Yamada I (2009) A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping. SIAM J Optim 19:1881–1893

    MathSciNet  MATH  Google Scholar 

  • Iiduka H, Yamada I (2012) Computational method for solving a stochastic linear-quadratic control problem given an unsolvable stochastic algebraic Riccati equation. SIAM J Control Optim 50:2173–2192

    MathSciNet  MATH  Google Scholar 

  • Kelly FP (1997) Charging and rate control for elastic traffic. Eur Trans Telecommun 8:33–37

    Google Scholar 

  • Kinderlehrer D, Stampacchia G (2000) An introduction to variational inequalities and their applications. Classics in Applied Mathematics, vol 31. SIAM, Philadelphia

    MATH  Google Scholar 

  • Krasnosel’skiĭ MA (1955) Two remarks on the method of successive approximations. Usp Mat Nauk 10:123–127

    MathSciNet  Google Scholar 

  • Maingé PE (2010) The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput Math Appl 59:74–79

    MathSciNet  MATH  Google Scholar 

  • Maingé PE, Moudafi A (2007) Strong convergence of an iterative method for hierarchical fixed-point problems. Pac J Optim 3:529–538

    MathSciNet  MATH  Google Scholar 

  • Mann WR (1953) Mean value methods in iteration. Proc Am Math Soc 4:506–510

    MathSciNet  MATH  Google Scholar 

  • Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans Netw 8:556–567

    Google Scholar 

  • Moudafi A (2007) Krasnoselski–Mann iteration for hierarchical fixed-point problems. Inverse Probl 23:1635–1640

    MathSciNet  MATH  Google Scholar 

  • Nedić A, Bertsekas DP (2001) Incremental sugradient methods for nondifferentiable optimization. SIAM J Optim 12:109–138

    MathSciNet  MATH  Google Scholar 

  • Nedić A, Ozdaglar A (2009) Approximate primal solutions and rate analysis for dual subgradient methods. SIAM J Optim 19:1757–1780

    MathSciNet  MATH  Google Scholar 

  • Rami MA, Zhou XY (2000) Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans Autom Control 45:1131–1142

    MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Shalev-Shwartz S, Singer Y, Srebro N, Cotter A (2011) Pegasos: primal estimated sub-gradient solver for SVM. Math Program 127:3–30

    MathSciNet  MATH  Google Scholar 

  • Slavakis K, Yamada I (2007) Robust wideband beamforming by the hybrid steepest descent method. IEEE Trans Signal Process 55:4511–4522

    MathSciNet  MATH  Google Scholar 

  • Srikant R (2004) The mathematics of internet congestion control. Birkhauser, Boston

    MATH  Google Scholar 

  • Takahashi W (2000) Nonlinear functional analysis. Yokohama Publishers, Yokohama

    MATH  Google Scholar 

  • Vasin VV, Ageev AL (1995) Ill-posed problems with a priori information. V.S.P. Intl Science, Utrecht

    MATH  Google Scholar 

  • Wittmann R (1992) Approximation of fixed points of nonexpansive mappings. Arch Math 58:486–491

    MathSciNet  MATH  Google Scholar 

  • Wonham WM (1968) On a matrix Riccati equation of stochastic control. SIAM J Control 6:681–697

    MathSciNet  MATH  Google Scholar 

  • Yamada I (2001) The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu D, Censor Y, Reich S (eds) Inherently parallel algorithms for feasibility and optimization and their applications. Elsevier, New York, pp 473–504

    Google Scholar 

  • Yamagishi M, Yamada I (2017) Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization. Inverse Probl 33:044003

    MathSciNet  MATH  Google Scholar 

  • Yu H, Neely MJ (2017) A simple parallel algorithm with an \({O}(1/t)\) convergence rate for general convex programs. SIAM J Optim 27:759–783

    MathSciNet  MATH  Google Scholar 

  • Zeidler E (1985) Nonlinear functional analysis and its applications II/B. Nonlinear monotone operators. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The author is sincerely grateful to the anonymous referees for helping him improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Iiduka.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant Number JP18K11184.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iiduka, H. Decentralized hierarchical constrained convex optimization. Optim Eng 21, 181–213 (2020). https://doi.org/10.1007/s11081-019-09440-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-019-09440-7

Keywords

Mathematics Subject Classification

Navigation