Skip to main content
Log in

The Reaction Mechanism and Its Kinetic Model of CO2 Reforming with CH4 over Ni-Mg15@HC Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, the kinetic of CO2 dry reforming with CH4 (DRM) over the Ni-Mg15@HC catalyst was studied after excluding the influence of internal and external mass transfer at 700–850 °C. At the same time, the partial pressures of CH4 and CO2 were varied from 10 to 50 kPa. The experimental results demonstrated that the reaction rate was sharply increased with the increase of CH4 partial pressure, while the increase of CO2 partial pressure led to a relative increase of the reaction rate. Therefore, it could be said that CH4 dissociation was the rate determining step for DRM reaction. Moreover, the apparent activation energy of CH4 consumption (48.6 kJ/mol) during DRM reaction was higher than that of CO2 consumption (30.1 kJ/mol), which also confirmed the above assumption. On the basis of the reaction mechanism, a Langmuir–Hinshelwood kinetic rate model was developed, and the kinetic parameters were also estimated by the nonlinear least square regression method. The developed model could satisfactorily fit the experimental data, and R2 was as high as 0.965.

Graphic Abstract

The apparent activation energy of CH4 consumption during DRM reaction was higher than that of CO2, then the rate determining step was determined. A kinetic rate model was developed, which could well describe the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang F, Xu L, Yang J, Zhang J, Zhang L, Li H, Zhao Y, Li HX, Wu K, Xu GQ, Chen W (2017) Catal Today 281:295–303

    Article  CAS  Google Scholar 

  2. Yentekakis IV, Goula G, Hatzisymeon M, Betsi-Argyropoulou I, Botzolaki G, Kousi K, Kondarides DI, Taylor MJ, Parlett CMA, Osatiashtiani A, Kyriakou G, Holgado JP, Lambert RM (2019) Appl Catal B: Environ 243:490–501

    Article  CAS  Google Scholar 

  3. Han J, Zhan Y, Street J, To F, Yu F (2017) Int J Hydrogen Energy 42:18364–18374

    Article  CAS  Google Scholar 

  4. Muñoz MA, Calvino JJ, Rodríguez-Izquierdo JM, Blanco G, Arias DC, Pérez-Omil JA, Hernández-Garrido JC, González-Leal JM, Cauqui MA, Yeste MP (2017) Appl Surf Sci 426:864–873

    Article  CAS  Google Scholar 

  5. Han J, Zhang L, Zhao B, Qin L, Wang Y, Xing F (2019) Ind Crops Prod 128:290–297

    Article  CAS  Google Scholar 

  6. Rameshan C, Li H, Anic K, Roiaz M, Pramhaas V, Rameshan R, Blume R, Hävecker M, Knudsen J, Knopgericke A (2018) J Phys: Condens Matter 30:264007–264019

    CAS  Google Scholar 

  7. Singha RK, Yadav A, Shukla A, Kumar M, Bal R (2017) Catal Commun 92:19–22

    Article  CAS  Google Scholar 

  8. Moral A, Reyero I, Alfaro C, Bimbela F, Gandía LM (2018) Catal Today 299:280–288

    Article  CAS  Google Scholar 

  9. Zhan Y, Han J, Bao Z, Cao B, Li Y, Street J, Yu F (2017) Mol Catal 436:248–258

    Article  CAS  Google Scholar 

  10. Abou Rached J, Cesario MR, Estephane J, Tidahy HL, Gennequin C, Aouad S, Aboukaïs A, Abi-Aad E (2018) J Environ Chem Eng 6:4743–4754

    Article  CAS  Google Scholar 

  11. Horlyck J, Lawrey C, Lovell EC, Amal R, Scott J (2018) Chem Eng J 352:572–580

    Article  CAS  Google Scholar 

  12. Luisetto I, Tuti S, Romano C, Boaro M, Di Bartolomeo E, Kesavan JK, Kumar SS, Selvakumar K (2019) J CO2 Util 30:63–78

    Article  CAS  Google Scholar 

  13. Yang T, Chen W, Chen L, Liu W, Zhang D (2016) J CO2 Util 16:130–137

    Article  CAS  Google Scholar 

  14. China NBoSo (2018) China Statistical Yearbook 2018. China Statistics Press, Beijing

    Google Scholar 

  15. Wang C, Jie X, Qiu Y, Zhao Y, Al-Megren HA, Alshihri S, Edwards PP, Xiao T (2019) Appl Catal B 259:118019–118030

    Article  CAS  Google Scholar 

  16. Lim Z-Y, Wu C, Wang WG, Choy K-L, Yin H (2016) J Mater Chem A 4:153–159

    Article  CAS  Google Scholar 

  17. Li Z, Wang Z, Kawi S (2018) ChemCatChem 11:202–224

    Article  CAS  Google Scholar 

  18. Li Z, Kawi S (2018) Catal Sci Technol 8:1915–1922

    Article  CAS  Google Scholar 

  19. Li Z, Jiang B, Wang Z, Kawi S (2018) J CO2 Util 27:238–246

    Article  CAS  Google Scholar 

  20. Li Z, Das S, Hongmanorom P, Dewangan N, Wai MH, Kawi S (2018) Catal Sci Technol 8:2763–2778

    Article  CAS  Google Scholar 

  21. Kathiraser Y, Oemar U, Saw ET, Li Z, Kawi S (2015) Chem Eng J 278:62–78

    Article  CAS  Google Scholar 

  22. Gokon N, Osawa Y, Nakazawa D, Kodama T (2009) Int J Hydrog Energy 34:1787–1800

    Article  CAS  Google Scholar 

  23. Mark MF, Maier WF, Mark F (1997) Chem Eng Technol 20:361–370

    Article  CAS  Google Scholar 

  24. Wei J, Iglesia E (2004) J Catal 224:370–383

    Article  CAS  Google Scholar 

  25. Bao Z, Lu Y, Yu F (2017) AIChE J 63:2019–2029

    Article  CAS  Google Scholar 

  26. Oemar U, Kathiraser Y, Mo L, Ho XK, Kawi S (2016) Catal Sci Technol 6:1173–1186

    Article  CAS  Google Scholar 

  27. Richardson JT, Paripatyadar SA (1990) Appl Catal 61:293–309

    Article  CAS  Google Scholar 

  28. Zhang ZL, Verykios XE (1994) Catal Today 21:589–595

    Article  CAS  Google Scholar 

  29. Wang S, Lu GQ (1999) Ind Eng Chem Res 38:2615–2625

    Article  CAS  Google Scholar 

  30. Nandini A, Pant KK, Dhingra SC (2006) Appl Catal A 308:119–127

    Article  CAS  Google Scholar 

  31. Tsipouriari VA, Verykios XE (2001) Catal Today 64:83–90

    Article  CAS  Google Scholar 

  32. Han J, Liang Y, Qin L, Zhao B, Wang H, Wang Y (2019) Catal Lett 149:3224–3237

    Article  CAS  Google Scholar 

  33. Das S, Ashok J, Bian Z, Dewangan N, Wai MH, Du Y, Borgna A, Hidajat K, Kawi S (2018) Appl Catal B 230:220–236

    Article  CAS  Google Scholar 

  34. Aresta M, Karimi I, Kawi S (eds) (2019) An economy based on carbon dioxide and water. Springer, pp 155–210. https://doi.org/10.1007/978-3-030-15868-2

  35. Zhang HWJ, Dalai AK (2009) Ind Eng Chem Res 48:677–684

    Article  CAS  Google Scholar 

  36. Bian Z, Suryawinata IY, Kawi S (2016) Appl Catal B 195:1–8

    Article  CAS  Google Scholar 

  37. Bradford MC, Vannice MA (1996) Appl Catal A 142:97–122

    Article  CAS  Google Scholar 

  38. Ferreira-Aparicio P, Guerrero-Ruiz A, Rodrıguez-Ramos I (1998) Appl Catal A 170:177–187

    Article  CAS  Google Scholar 

  39. Wang S, Lu GM (2000) React Eng Pollut Prev 42:75–84

    Article  Google Scholar 

  40. Sun Y, Zhang G, Liu J, Zhao P, Hou P, Xu Y, Zhang R (2018) Int J Hydrog Energy 43:1497–1507

    Article  CAS  Google Scholar 

  41. Bustamante F, Enick RM, Cugini AV, Killmeyer RP, Howard BH, Rothenberger KS, Ciocco MV, Morreale BD, Chattopadhyay S, Shi S (2004) AIChE J 50:1028–1041

    Article  CAS  Google Scholar 

  42. Zhang G, Su A, Du Y, Qu J, Xu Y (2014) J Colloid Interface Sci 433:149–155

    Article  CAS  PubMed  Google Scholar 

  43. Li C, Fu S-F, Zhang H, Xin Q (1994) J Chem Soc Chem Commun 1:17–18

    Article  Google Scholar 

  44. Erdöhelyi A, Cserenyi C, Solymosi F (1993) J Catal 141:287–299

    Article  Google Scholar 

  45. Sazonova NN, Sadykov VA, Bobin AS, Pokrovskaya SA, Gubanova EL, Mirodatos C (2009) React Kinet Catal Lett 98:35–41

    Article  CAS  Google Scholar 

  46. Zhang Z, Verykios XE (1996) Catal Lett 38:175–179

    Article  CAS  Google Scholar 

  47. Sadykov V, Muzykantov V, Bobin A, Mezentseva N, Alikina G, Sazonova N, Sadovskaya E, Gubanova L, Lukashevich A, Mirodatos C (2010) Catal Today 157:55–60

    Article  CAS  Google Scholar 

  48. Foo SY, Cheng CK, Nguyen TH, Adesina AA (2011) Catal Today 164:221–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work is supported Natural Science Foundation of Hubei Province (Grant No. 2019CFB116), Technology Innovation Special Foundation of Hubei Province (Grant No. 2019ACA157&2019AHB073&2019ZYYD060) and Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education, China (T201902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linbo Qin or Bo Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Liang, Y., Qin, L. et al. The Reaction Mechanism and Its Kinetic Model of CO2 Reforming with CH4 over Ni-Mg15@HC Catalyst. Catal Lett 150, 1479–1488 (2020). https://doi.org/10.1007/s10562-019-03052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03052-7

Keywords

Navigation