Skip to main content
Log in

Asymptotic behaviour of instantons on cylinder manifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this article, we study the instanton equation on the cylinder over a closed manifold X which admits non-zero smooth 3-form P and 4-form Q. Our results are (1) if X is a good manifold, i.e., PQ satisfying \(d*_{X}P=d*_{X}Q=0\), then the instanton with integrable curvature decays exponentially at the ends, and, (2) if X is a real Killing spinor manifold, i.e., PQ satisfying \(dP=4Q\) and \(d*_{X}Q=(n-3)*_{X}P\), we prove that the solution of instanton equation is trivial under some mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, I., Ivanova, T.A., Lechtenfeld, O., Lubbe, F.: Yang–Mills instantons and dyons on homogeneous \(G_{2}\)-manifolds. JHEP 2010(10), 1–27 (2010)

    Article  Google Scholar 

  2. Carrión, R.R.: A generalization of the notion of instanton. Diff. Geom. Appl. 8(1), 1–20 (1998)

    Article  MathSciNet  Google Scholar 

  3. Corrigan, E., Devchand, C., Fairlie, D.B., Nuyts, J.: First order equations for gauge fields in spaces of dimension great than four. Nucl. Phys. B 214(3), 452–464 (1983)

    Article  Google Scholar 

  4. Donaldson, S.K.: Floer Homology Groups in Yang–Mills Theory. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  5. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  6. Donaldson, S.K., Segal. E.: Gauge theory in higher dimensions, II. (2009). arXiv:0902.3239

  7. Donaldson, S.K., Thomas, R.P.: Gauge Theory in Higher Dimensions, pp. 31–47. The Geometric Universe, Oxford (1998)

    MATH  Google Scholar 

  8. Graña, M.: Flux compactifications in string theory: a comprehensive review. Phys. Rep. 423(3), 91–158 (2006)

    Article  MathSciNet  Google Scholar 

  9. Green, M.B., Schwarz, J.H., Witten, E.: Supperstring Theory. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  10. Harland, D., Ivanova, T.A., Lechtenfeld, O., Popov, A.D.: Yang–Mills flows on nearly Kähler manifolds and \(G_{2}\)-instantons. Commun. Math. Phys. 300(1), 185–204 (2010)

    Article  Google Scholar 

  11. The Geometric Universe, D., Nölle, C.: Instantons and Killing spinors. JHEP 3, 1–38 (2012)

    Google Scholar 

  12. Haupt, A.S.: Yang–Mills solutions and \(Spin(7)\)-instantons on cylinders over coset spaces with \(G_{2}\)-structure. JHEP 3, 1–53 (2016)

    Google Scholar 

  13. Huang, T.: Instanton on cylindrical manifolds. Ann. Henri Poincaré 18(2), 623–641 (2017)

    Article  MathSciNet  Google Scholar 

  14. Huang, T.: Stable Yang–Mills connections on special holonomy manifolds. J. Geom. Phys. 116, 271–280 (2017)

    Article  MathSciNet  Google Scholar 

  15. Huang, T.: An energy gap for complex Yang–Mills equations. SIGMA Symmetry Integr. Geom. Methods Appl. 13, 15 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Ivanova, T.A., Popov, A.D.: Instantons on special holonomy manifolds. Phys. Rev. D 85(10), 105012 (2012)

    Article  Google Scholar 

  17. Ivanova, T.A., Lechtenfeld, O., Popov, A.D., Rahn, T.: Instantons and Yang–Mills flows on coset spaces. Lett. Math. Phys. 89(3), 231–247 (2009)

    Article  MathSciNet  Google Scholar 

  18. Price, P.: A monotonicity formula for Yang–Mills fields. Manuscr. Math. 43, 131–166 (1983)

    Article  MathSciNet  Google Scholar 

  19. Sá Earp, H.N.: Generalised Chern–Simons theory and \(G_{2}\)-instantons over associative fibrations. SIGMA 10, 083 (2014)

    MATH  Google Scholar 

  20. Sá Earp, H.N.: \(G_{2}\)-instantons over asymptotically cylindrical manifolds. Geom. Topol. 19, 61–111 (2015)

    Article  MathSciNet  Google Scholar 

  21. Sá Earp, H.N., Walpuski, T.: \(G_{2}\)-instantons over twisted connected sums. Geom. Topol. 19, 1263–1285 (2015)

    Article  MathSciNet  Google Scholar 

  22. Taubes, C.H.: Casson’s invariant and gauge theory. J. Diff. Geom. 31(2), 547–599 (1990)

    Article  MathSciNet  Google Scholar 

  23. Tian, G.: Gauge theory and calibrated geometry. I. Ann. Math. 151(1), 193–268 (2000)

    Article  MathSciNet  Google Scholar 

  24. Uhlenbeck, K.K.: Connctions with \(L^{p}\) bounds on curvature. Commun. Math. Phys. 83, 31–42 (1982)

    Article  Google Scholar 

  25. Uhlenbeck, K.K.: The Chern classes of Sobolev connections. Commun. Math. Phys. 101, 445–457 (1985)

    Article  MathSciNet  Google Scholar 

  26. Walpuski, T.: \(G_{2}\)-instantons on generalised Kummer constructions. Geom. Topol. 17, 2345–2388 (2013)

    Article  MathSciNet  Google Scholar 

  27. Ward, R.S.: Completely solvable gauge field equations in dimension great than four. Nucl. Phys. B 236(2), 381–396 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referee for a careful reading of my manuscript and helpful comments. This work is supported by Nature Science Foundation of China No. 11801539 and Postdoctoral Science Foundation of China Nos. 2017M621998, 2018T110616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T. Asymptotic behaviour of instantons on cylinder manifolds. manuscripta math. 162, 171–189 (2020). https://doi.org/10.1007/s00229-019-01124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01124-x

Mathematics Subject Classification

Navigation