Skip to main content
Log in

Investigation of rheological behaviors of polyolefin blend type thermoplastic elastomers for quantifying microstructure-property relationships

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Polyolefin blend type thermoplastic elastomers (TPEs) were prepared via melt blending method in a twin screw extruder by using isotactic polypropylene (i-PP), three different styrene-olefin triblock copolymers (SEBS-1 and SEBS-2 having a styrene content of 30 wt.% and 60 wt.%, respectively and SEEPS having a styrene content of 30 wt.%) and paraffinic oil. Composition-dependent and time-dependent viscoelastic properties of compounds were determined by various test procedures conducted in a rotational rheometer in melt state. It was found that the content of polystyrene blocks (or hard segment) in copolymers governed the rheological behaviors of compounds. It can be concluded that the increasing amount of styrene-olefin block copolymer or content of glassy domains into blend composition reduces miscibility between polyolefin and elastomer phases and also yields higher melt elasticity and viscosity, longer relaxation times, lower creep strain and compliance values at relatively longer time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abreu, F.O.M.S., M.M.C. Forte, and S.A. Liberman, 2005, SBS and SEBS block copolymers as impact modifiers for polypropylene compounds, J. Appl. Polym. Sci. 95, 254–263.

    Article  Google Scholar 

  • Ahmadi, M., F. Rezaei, S.M.M. Mortazavi, M. Entezam, and F.J. Stadler, 2017, Complex interplay of short- and long-chain branching on thermal and rheological properties of ethylene/α-olefin copolymers made by metallocene catalysts with oscillating ligand structure, Polymer 112, 43–52.

    Article  Google Scholar 

  • Alanalp, M.B. and A. Durmus, 2018, Quantifying microstructural, thermal, mechanical and solid-state viscoelastic properties of polyolefin blend type thermoplastic elastomer compounds, Polymer 142, 267–276.

    Article  Google Scholar 

  • Al-Juhani, A.A., 2015, Rheology, mechanical properties, and thermal stability of maleated polyethylene filled with nano-clays, J. Nanomater. 16, 394.

    Google Scholar 

  • Ao, Y., F. Feng, and H. Zhang, 2016, Fracture behavior and deformation mechanisms of polypropylene/ethylene-propylene-diene blends, J. Polym. Eng. 36, 695–704.

    Article  Google Scholar 

  • Aoki, Y., R. Takahashi, S. Nishitsuji, A. Ishigami, T. Koda, and A. Nishioka, 2016, Viscoelasticity and morphology of polystyrene-block-poly[ethylene-co-(ethylene-propylene)]-block-polystyrene tri-block copolymer/paraffinic oil blends. 1. Effect of oil content, Rheol. Acta 55, 293–301.

    Article  Google Scholar 

  • Arevalillo, A., M.E. Munoz, A. Santamaria, L. Fraga, and J.A. Barrio, 2008, Novel rheological features of molten SEBS copolymers: Mechanical relaxation at low frequencies and flow split, Eur. Polym. J. 44, 3213–3221.

    Article  Google Scholar 

  • Bae, W.S., O.J. Kwon, B.C. Kim, and D.W. Chae, 2012, Effects of multi-walled carbon nanotubes on rheological and physical properties of polyamide-based thermoplastic elastomers, Korea-Aust. Rheol. J. 24, 221–227.

    Article  Google Scholar 

  • Barczewski, M. and O. Mysiukiewicz, 2018, Rheological and processing properties of poly(lactic acid) composites filled with ground chestnut shell, Polym.-Korea 42, 267–274.

    Article  Google Scholar 

  • Barzegari, M.R., A.A. Yousefi, M.E. Zeynali, A. Rabii, and D. Rodrigue, 2004, Rheology of co-continuous phase in physical thermoplastic elastomers, Polym. Int. 53, 1448–1455.

    Article  Google Scholar 

  • Bazli, L., A. Khavandi, M.A. Boutorabi, and M. Karrabi, 2017, Correlation between viscoelastic behavior and morphology of nanocomposites based on SR/EPDM blends compatibilized by maleic anhydride, Polymer 113, 156–166.

    Article  Google Scholar 

  • Carreau, P.J., I.F. MacDonald, and R.B. Bird, 1968, A nonlinear viscoelastic model for polymer solutions and melts-II, Chem. Eng. Sci. 23, 901–911.

    Article  Google Scholar 

  • Chrissopoulou, K. and S.H. Anastasiadis, 2011, Polyolefin/layered silicate nanocomposites with functional compatibilizers, Eur. Polym. J. 47, 600–613.

    Article  Google Scholar 

  • Dordinejad, A.K. and S.H. Jafari, 2014, Miscibility analysis in LLDPE/LDPE blends via thermorheological analysis: Correlation with branching structure, Polym. Eng. Sci. 54, 1081–1088.

    Article  Google Scholar 

  • Duffy, J.J., C.A. Rega, R. Jack, and S. Amin, 2016, An algebraic approach for determining viscoelastic moduli from creep compliance through application of the Generalised Stokes-Einstein relation and Burgers model, Appl. Rheol. 26, 15130.

    Google Scholar 

  • Durmus, A., A. Kasgoz, and C.W. Macosko, 2007a, Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology, Polymer 48, 4492–4502.

    Article  Google Scholar 

  • Durmus, A., M. Woo, A. Kasgoz, C.W. Macosko, and M. Tsapatsis, 2007b, Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties, Eur. Polym. J. 43, 3737–3749.

    Article  Google Scholar 

  • Ercan, N., A. Durmus, and A. Kasgoz, 2017, Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films, J. Thermoplast. Compos. Mater. 30, 950–970.

    Article  Google Scholar 

  • Fasihi, M. and H. Mansouri, 2016, Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene, J. Appl. Polym. Sci. 133, 44068.

    Article  Google Scholar 

  • Haenelt, T.G., P. Georgopanos, C. Abetz, S. Rangou, D. Alisch, A. Meyer, U.A. Handge, and V. Abetz, 2014, Morphology and elasticity of polystyrene-block-polyisoprene diblock copolymers in the melt, Korea-Aust. Rheol. J. 26, 263–275.

    Article  Google Scholar 

  • Hong, X., G. Nie, Z. Lin, and J. Rong, 2012, Structure and properties of PPO/PP blends compatibilized by triblock copolymer SEBS and SEPS, Polym. Plast. Technol. Eng. 51, 971–976.

    Article  Google Scholar 

  • Kasgoz, A., D. Akin, and A. Durmus, 2012, Rheological behavior of cycloolefin copolymer/graphite composites, Polym. Eng. Sci. 52, 2645–2653.

    Article  Google Scholar 

  • Kasgoz, A., D. Akin, and A. Durmus, 2014, Rheological and electrical properties of carbon black and carbon fiber filled cyclic olefin copolymer composites, Compos. Pt. B-Eng. 62, 113–120.

    Article  Google Scholar 

  • Keßner, U. and H. Münstedt, 2010, Thermorheology as a method to analyze long-chain branched polyethylenes, Polymer 51, 507–513.

    Article  Google Scholar 

  • Kim, J.K., D.S. Jung, and J. Kim, 1993, Morphology and rheological behaviour of mixtures of poly(styrene-b-ethylene-co-butylene-styrene) block copolymer and poly(2,6-dimethyl-1,4-phenylene ether), Polymer 34, 4613–4624.

    Article  Google Scholar 

  • Leone, G., M. Mauri, I. Pierro, G. Ricci, M. Canetti, and F. Bertini, 2016, Polyolefin thermoplastic elastomers from 1-octene chain-walking polymerization, Polymer 100, 37–44.

    Article  Google Scholar 

  • Li, H. and X.M. Xie, 2017, Morphology development and superior mechanical properties of PP/PA6/SEBS ternary blends compatibilized by using a highly efficient multi-phase compatibilizer, Polymer 108, 1–10.

    Article  Google Scholar 

  • Liao, K.H., Y. Qian, and C.W. Macosko, 2012, Ultralow percolation graphene/polyurethane acrylate nanocomposites, Polymer 53, 3756–3761.

    Article  Google Scholar 

  • Lin, X., Q. Qian, L. Xiao, Q. Huang, W. Zhou, Q. Chen, and H. Zhang, 2016, Melt rheology and properties of compatibilized recycled poly(ethylene terephthalate)/(styrene-ethylene-ethylene-propylene-styrene) block copolymer blends, J. Vinyl Addit. Technol. 22, 342–349.

    Article  Google Scholar 

  • Lopez-Barron, C.R. and C.W. Macosko, 2014, Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening, J. Rheol. 58, 1935–1953.

    Article  Google Scholar 

  • Ma, B.S., Q.B. Xia, J.C. Yin, C.M. Guo, and T.H. Ren, 2016, The distribution of rubber oil in oil-extended thermoplastic elastomer styrene-butadiene-styrene, J. Elastomer Plast. 48, 239–250.

    Article  Google Scholar 

  • Maani, A., M.C. Heuzey, and P.J. Carreau, 2011, Coalescence in thermoplastic olefin (TPO) blends under shear flow, Rheol. Acta. 50, 881–895.

    Article  Google Scholar 

  • Meincke, O., D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, and H. Warth, 2004, Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene, Polymer 45, 739–748.

    Article  Google Scholar 

  • Panaitescu, D.M., Z. Vuluga, C. Radovici, and C. Nicolae, 2012, Morphological investigation of PP/nanosilica composites containing SEBS, Polym. Test 31, 355–365.

    Article  Google Scholar 

  • Pötschke, P., M. Abdel-Goad, I. Alig, S. Dudkin, and D. Lellinger, 2004, Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites, Polymer 45, 8863–8870.

    Article  Google Scholar 

  • Rinawa, K., S.N. Maiti, R. Sonnier, and J.M.L. Cuesta, 2015, Dynamic rheological studies and applicability of time-temperature superposition principle for PA12/SEBS-g-MA blends, Polym. Bull. 72, 3305–3324.

    Article  Google Scholar 

  • Saikrasun, S., S. Bualek-Limcharoen, S. Kohjiya, and K. Urayama, 2003, Thermotropic liquid-crystalline copolyester/thermoplastic elastomer in situ composites. I. Rheology, morphology, and mechanical properties of extruded strands, J. Appl. Polym. Sci. 89, 2676–2685.

    Article  Google Scholar 

  • Sengers, W.G.F., M. Wübbenhorst, S.J. Picken, and A.D. Gotsis, 2005, Distribution of oil in olefinic thermoplastic elastomer blends, Polymer 46, 6391–6401.

    Article  Google Scholar 

  • Shahbikian, S., P.J. Carreau, M.C. Heuzey, M.D. Ellul, H.P. Nadella, J. Cheng, and P. Shirodkar, 2011, Rheology/morphology relationship of plasticized and nonplasticized thermoplastic elastomers based on ethylene-propylene-diene-terpolymer and polypropylene, Polym. Eng. Sci. 51, 2314–2327.

    Article  Google Scholar 

  • Sharma, R. and S.N. Maiti, 2015a, Effects of SEBS-g-MA copolymer on non-isothermal crystallization kinetics of polypropylene, J. Mater. Sci. 50, 447–456.

    Article  Google Scholar 

  • Sharma, R. and S.N. Maiti, 2015b, Melt rheological properties of PBT/SEBS and reactively compatibilized PBT/SEBS/SEBS-g-MA polymer blends, J. Appl. Polym. Sci. 132, 41402.

    Google Scholar 

  • Tiggemann, H.M., V.F. Ribeiro, F. Celso, and S.M.B. Nachtigall, 2015, Effect of commercial clays on the properties of SEBS/PP/oil thermoplastic elastomers. Part 1. Physical, mechanical and thermal properties, Appl. Clay Sci. 109–110, 151–156.

    Article  Google Scholar 

  • Tiwari, R.R. and D.R. Paul, 2011, Polypropylene-elastomer (TPO) nanocomposites: 2. Room temperature Izod impact strength and tensile properties, Polymer 52, 5595–5605.

    Article  Google Scholar 

  • Trinkle, S. and C. Friedrich, 2001, Van Gurp-Palmen-plot: A way to characterize polydispersity of linear polymers, Rheol. Acta 40, 322–328.

    Article  Google Scholar 

  • van Gurp, M. and J. Palmen, 1998, Time-temperature superposition for polymeric blends, Rheol. Bull. 67, 5–8.

    Google Scholar 

  • Williamson, R.V., 1929, The flow of pseudoplastic materials, Ind. Eng. Chem. Res. 21, 1108–1111.

    Article  Google Scholar 

  • Zou, W., R.Y. Chen, C. Wu, and J.P. Qu, 2016, Influence of process parameters on property of PP/EPDM blends prepared by a novel vane extruder, J. Polym. Eng. 36, 899–908.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Durmus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmus, A., Alanalp, M.B. & Aydin, I. Investigation of rheological behaviors of polyolefin blend type thermoplastic elastomers for quantifying microstructure-property relationships. Korea-Aust. Rheol. J. 31, 97–110 (2019). https://doi.org/10.1007/s13367-019-0011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0011-8

Keywords

Navigation