Skip to main content

Advertisement

Log in

Natively oxidized amino acid residues in the spinach PS I-LHC I supercomplex

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) production is an unavoidable byproduct of electron transport under aerobic conditions. Photosystem II (PS II), the cytochrome  b6/f complex and Photosystem I (PS I) are all demonstrated sources of ROS. It has been proposed that PS I produces substantial levels of a variety of ROS including O .−2 , 1O2, H2O2 and, possibly, •OH; however, the site(s) of ROS production within PS I has been the subject of significant debate. We hypothesize that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in spinach PS I which was isolated from field-grown spinach. The modified residues were identified by high-resolution tandem mass spectrometry. As expected, many of the modified residues lie on the surface of the complex. However, a well-defined group of oxidized residues, both buried and surface-exposed, lead from the chl a’ of P700 to the surface of PS I. These residues (PsaB: 609F, 611E, 617M, 619W, 620L, and PsaF: 139L, 142A,143D) may identify a preferred route for ROS, probably 1O2, to egress the complex from the vicinity of P700. Additionally, two buried residues located in close proximity to A1B (PsaB:712H and 714S) were modified, which appears consistent with A1B being a source of O .−2 . Surprisingly, no oxidatively modified residues were identified in close proximity to the 4Fe–FS clusters FX, FA or FB. These cofactors had been identified as principal targets for ROS damage in the photosystem. Finally, a large number of residues located in the hydrophobic cores of Lhca1–Lhca4 are oxidatively modified. These appear to be the result of 1O2 production by the distal antennae for the photosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alboresi A, Ballottari B, Hienerwadel R, Giacometti GM, Morosinotto T (2009) Antenna complexes protect Photosystem I from photoinhibition. BMC Plant Biol 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoshvili M, Caspy I, Hippler M, Nelson N (2019) Structure and function of Photosystem I in Cyanidioschyzon merolae. Photosyn Res 139:499–508

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Bell AJ, Frankel LK, Bricker TM (2015) High yield non-detergent Isolation of Photosystem I-Light harvesting Chlorophyll II membranes from spinach thylakoids. J Biol Chem 290:18429–18437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermudez MA, Galmes J, Moreno I, Mullineaux PM, Gotor C, Romero LC (2012) Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen. Plant Physiol 160:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos I et al (2017) Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I. Biochim Biophys Acta 1858:371–378

    Article  CAS  Google Scholar 

  • Breton J, Nabedryk E, Leibl W (1999) FTIR study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700+ and localization of the triplet character in 3P700. Biochemistry 38:11585–11592

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Mummadisetti MP, Frankel LK (2015) Recent advances in the use of mass spectrometry to examine structure/function relationships in Photosystem II. J Photochem Photobiol B 152:227–246. https://doi.org/10.1016/j.jphotobiol.2015.08.031

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Tibiletti T, Jennings RC, Santabarbara S (2014) A Comparison between plant Photosystem I and Photosystem II architecture and functioning. Curr Prot Pep Sci 14:296–331

    Article  CAS  Google Scholar 

  • Caspy I, Nelson N (2018) Structure of plant Photosystem I. Biochem Soc Trans 46:285–294

    Article  CAS  PubMed  Google Scholar 

  • Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L (2012) The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. Plant Physiol 159:1745–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhry FK, Rivero RM, Blumwald E, Mittler R (2016) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  Google Scholar 

  • Croce R, van Amerongen H (2013) Light-harvesting in Photosystem I. Photosyn Res 116:153–166

    Article  CAS  Google Scholar 

  • Croce R, Zucchelli G, Garlaschi FM, Bassi R, Jennings RC (1996) Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry 35:8572–8579

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system Software

  • Delepelaire P, Chua NH (1979) Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci USA 76:111–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diz AP, Carvajal-Rodriguez A, Skibinski DOF (2011) Multiple hypothesis testing in proteomics: a strategy for experimental work. Mol Cell Proteomics. https://doi.org/10.1074/mcp.m110.004374

    Article  PubMed  Google Scholar 

  • Djaman O, Outten FW, Imlay JA (2004) Repair of oxidized iron-sulfur clusters in Escherichia coli. J Biol Chem 279:44590–44599

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antiox Redox Signal 18:2087–2090

    Article  CAS  Google Scholar 

  • Frankel LK, Sallans L, Limbach PA, Bricker TM (2012) Identification of oxidized amino acid residues in the vicinity of the Mn4CaO5 cluster of Photosystem II: implications for the identification of oxygen channels within the photosystem. Biochemistry 51:6371–6377. https://doi.org/10.1021/bi300650n

    Article  CAS  PubMed  Google Scholar 

  • Frankel LK, Sallans L, Limbach PA, Bricker TM (2013) Oxidized amino acid residues in the vicinity of QA and PheoD1 of the Photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. PLoS ONE 8:e58042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guergova-Kuras M, Brent Boudreaux MB, Joliot A, Joliot P, Redding K (2001) Evidence for two active branches for electron transfer in Photosystem I. Proc Natl Acad Sci USA 98:4437–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai MPG, Iavarone AT, Nogales E, Niyogi KK (2018) A unique supramolecular organization of Photosystem I in the moss Physcomitrella patens. Nat Plants 4:904–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao S, Emmanuel H, Guikema JA (2004) High light stress inducing photoinhibition and protein degradation of Photosystem I in Brassica rapa. Plant Sci 167:733–741

    Article  CAS  Google Scholar 

  • Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, Pospíšil P (2017) Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc Natl Acad Sci USA 114:2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar UK, Simonian M, Whitelegge JP (2017) Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics 14:715–723

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2004) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Levesque-Tremblay G, Havaux M, Ouellet F (2009) The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J 60:691–702

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2004) Mutation of the putative hydrogen-bond donor to P700 of Photosystem I. Biochemistry 43:12634–12647

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann Rev Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Mazor Y, Borovikova A, Caspy I, Nelson N (2017) Structure of the plant Photosystem I supercomplex at 2.6 angstrom resolution. Nat Plants 3:17014

    Article  CAS  PubMed  Google Scholar 

  • Melkozernov AN, Blankenship RE (2005) Structural and functional organization of the peripheral light-harvesting system in Photosystem I. Photosyn Res 85:33–50

    Article  CAS  Google Scholar 

  • Mignolet-Spruyt L et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Pi X et al (2018) Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc Natl Acad Sci USA 115:4423–4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pospíšil P (2009) Production of reactive oxygen species by Photosystem II. Biochim Biophys Acta 1787:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Pospíšil P (2016) Production of reactive oxygen species by Photosystem II as a response to light and temperature stress. Front Plant Sci 7:1950. https://doi.org/10.3389/fpls.2016.01950

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen JR (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Rabilloud T, Vincon M, Garin J (1995) Micropreparative one- and two-dimensional electrophoresis: improvement with new photopolymerization systems. Electrophoresis 16:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Joly D, Gauthier A, Beauregard M, Carpentier R (2005) Protective effect of active oxygen scavengers on protein degradation and photochemical function in Photosystem I submembrane fractions during light stress. FEBS J 272:892–902

    Article  CAS  PubMed  Google Scholar 

  • Rutherford AW, Setif P (1990) Orientation of P700, the primary electron donor of Photosystem I. Biochim Biophys Acta 1019:128–132

    Article  CAS  Google Scholar 

  • Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O2. FEBS Lett 586:603–616

    Article  CAS  PubMed  Google Scholar 

  • Sejima T, Takagi D, Fukayama H, Makino ACM, (2014) Repetitive short-pulse light mainly inactivates Photosystem I in sunflower leaves. Plant Cell Physiol 55:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clust Omega. Mol Sys Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  Google Scholar 

  • Sonoike K (1995) Selective photoinhibition of Photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant Cell Physiol 36:825–830

    Article  CAS  Google Scholar 

  • Sonoike K (1996) Degradation of psaB gene product, the reaction center subunit of Photosystem I, is caused during photoinhibition of Photosystem I: possible involvement of active oxygen species. Plant Sci 115:157–164

    Article  CAS  Google Scholar 

  • Sonoike K (2011) Photoinhibition of Photosystem I. Physiol Plant 142:56–64

    Article  CAS  PubMed  Google Scholar 

  • Sonoike K, Terashima I (1994) Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L. Planta 194:287–293

    Article  CAS  Google Scholar 

  • Sonoike K, Terashima I, Iwaki M, Itoh S (1995) Destruction of photosystem I iron sulfur centers in leaves of Cucumis sativus L by weak illumination at chilling temperatures. FEBS Lett 3626(235):238

    Google Scholar 

  • Sonoike K, Kamo M, Hihara Y, Hiyama T, Enami I (1997) The mechanism of the degradation of PsaB gene product, one of the photosynthetic reaction centre subunits of Photosystem I, upon photoinhibition. Photosyn Res 53:55–63

    Article  CAS  Google Scholar 

  • Souda P, Ryan CM, Cramer WA, Whitelegge JP (2011) Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry. Methods 55:330–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan N, Golbeck JH (2009) Protein–cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I. Biochim Biophys Acta 1787:1057–1088

    Article  CAS  PubMed  Google Scholar 

  • Su X et al (2019) Antenna arrangement and energy transfer pathways of a green algal Photosystem-I-LHCI supercomplex. Nat Plants 5:273–281

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Ozawa SI, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y (2019) Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat Plants 5:626–636

    Article  PubMed  Google Scholar 

  • Sun G, Anderson VE (2004) Prevention of artifactual protein oxidation generated during sodium dodecyl sulfate-gel electrophoresis. Electrophoresis 25:959–965

    Article  CAS  PubMed  Google Scholar 

  • Takagi D, Shigeo S, Hashiguchi M, Sejima T, Miyake C (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause Photosystem I photoinhibition. Plant Physiol 171:1626–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722

    Article  CAS  PubMed  Google Scholar 

  • Taylor RM, Sallans L, Frankel LK, Bricker TM (2018) Natively oxidized amino acid residues in the spinach cytochrome b6 /f complex. Photosyn Res 137:141–151

    Article  CAS  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is Photosystem I, not Photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Tjus SE, Møller BL, Scheller HV (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol 116:755–764

    Article  CAS  PubMed  Google Scholar 

  • Tjus SE, Møller BL, Scheller HV (1999) Photoinhibition of Photosystem I damages both reaction centre proteins PSI-A and PSI-B and acceptor-side located small Photosystem I polypeptide Photosyn Res 60:75–86

    CAS  Google Scholar 

  • Tripathy BC, Oelmuller R (2012) Reactive oxygen species generation and signaling in plants Plant Signal Behav 7:1621–1633

    CAS  PubMed  Google Scholar 

  • Weisz DA, Gross ML, Pakrasi HB (2017) Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II Sci Adv 3:eaao3013

  • Xu H, Freitas MA (2009) MassMatrix: A database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data Proteomics 9:1548-1555

  • You J, Chan Z (2015) ROS regulation during abiotic stress in crop plants Front. Plant Sci 6:1092

    Google Scholar 

  • Yu Y, Smart LB, Jung Y-S, Golbeck J, Mcintosh L (1995) Absence of PsaC subunit allows assembly of Photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC6803. Plant Mol Biol 29:331–342

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Wei J, Carpentier R (2000) Degradation of the Photosystem I complex during photoinhibition. Photochem Photobiol 72:508–512

    Article  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI (2015) Effect of photosystem I inactivation on chlorophyll a fluorescenceinduction in wheat leaves: does activity of photosystem I play any role in OJIP rise? J Photochem Photobiol B 152:318–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was solely supported by the United States Department of Energy, Office of Basic Energy Sciences grant DE-FG02-09ER20310 to TMB and LKF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Bricker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, R., Sallans, L., Frankel, L.K. et al. Natively oxidized amino acid residues in the spinach PS I-LHC I supercomplex. Photosynth Res 143, 263–273 (2020). https://doi.org/10.1007/s11120-019-00698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00698-7

Keywords

Navigation