Skip to main content
Log in

Radiative Emissions in Visible–IR of Krypton Excilamp: Experimental and Theoretical Interpretations

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The paper presents an experimental and theoretical study of the radiative emission in the pure krypton lamp excited by dielectric barrier discharge. Parametric studies were made in the aim to observe the influence of the applied voltage, the gas pressure and the frequency on the radiation intensity emission from visible to infrared range. Stable dielectric barrier discharges were achieved between two identical insulated electrodes separated by 2 mm gap containing pure krypton at pressure from 129 to 460 mbar. The discharge was powered with a sinusoidal supply at frequencies from 10 to 50 kHz. Electrical characteristics of the DBD were studied. A spectroscopic and kinetic analysis of a pure krypton dielectric barrier discharge is reported here. The discharge emits radiations in UV, visible and IR range. In order to understand the emission process a theoretical interpretation of the results is given in the IR range by describing the chemical properties of the lamp. IR emission and a detailed study of kinetics allow to follow the population of metastable excited states of Krypton in (Kr*(3P0,2)). This population is indirectly responsible for UV emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl Chem 71:1819–1828

    Article  CAS  Google Scholar 

  2. Laroussi M, Akan T (2007) Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym 4:777–788

    Article  CAS  Google Scholar 

  3. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012

    Article  Google Scholar 

  4. Sosnin EA, Avdeev SM, Tarasenko VF, Skakun VS, Schitz DV (2015) KrCl barrier-discharge excilamps: energy characteristics and applications (review). Instrum Exp Technol 58:309–318

    Article  Google Scholar 

  5. Sosnin EA, Oppenländer T, Tarasenko VF (2006) Applications of capacitive and barrier discharge excilamps in photoscience. J Photochem Photobiol C Photochem Rev 7:145–163

    Article  CAS  Google Scholar 

  6. Caillier B, Caiut JMA, Muja C, Demoucron J, Mauricot R, Dexpert-Ghys J, Guillot P (2015) Decontamination efficiency of a DBD lamp containing an UV-C emitting phosphor. Photochem Photobiol 91:526–532

    Article  CAS  PubMed  Google Scholar 

  7. Sansonetti CJ, Greene MB (2007) Infrared spectrum and revised energy levels for neutral krypton. Phys Scr 75:577–603

    Article  CAS  Google Scholar 

  8. Wnuk A, Kaczkan M, Frukacz Z, Pracka I, Chadeyron G, Joubert M-F, Malinowski M (2002) Infra-red to visible up-conversion in holmium-doped materials. J Alloys Compd 341:353–357

    Article  CAS  Google Scholar 

  9. Maaoui A, Ben Slimen F, Haouari M, Bulou A, Boulard B, Ben Ouada H (2016) Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass. J Alloys Compd 682:115–123

    Article  CAS  Google Scholar 

  10. Caiut JMA, Lechevallier S, Dexpert-Ghys J, Caillier B, Guillot P (2011) UVC emitting phosphors obtained by spray pyrolysis. J Lumin 131:628–632

    Article  CAS  Google Scholar 

  11. Cates EL, Cho M, Kim JH (2011) Converting visible light into UVC: microbial inactivation by Pr3+ - activated upconversion materials. Environ Sci Tech 45:3680–3686

    Article  CAS  Google Scholar 

  12. Machala Z, Janda M, Hensel K, Jedlovský I, Leštinská L, Foltin V, Martišovitš V, Morvová M (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243:194–201

    Article  CAS  Google Scholar 

  13. Markovitsi D, Gustavsson T, Banyasz A (2010) Absorption of UV radiation by DNA: spatial and temporal features Mutat. Res Mutat Res 704:21–28

    Article  CAS  PubMed  Google Scholar 

  14. Niquet R, Boehm D, Schnabel U, Cullen P, Bourke P, Ehlbeck J (2018) Characterising the impact of post-treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Process Polym 15:1700127

    Article  CAS  Google Scholar 

  15. Caillier B, Guillot P, Menguellat IZA, Bachir NLD, Belasri A (2016) Characteristics of Krypton dielectric barrier discharge lamp. In: 2016 IEEE International Conference on Plasma Science (ICOPS), pp 1–1

  16. Marchal F, Sewraj N, Gardou J-P, Merbahi N, Yousfi M (2018) Study of formation and decay of rare-gas excimers by laser-induced fluorescence. In: Britun N, Nikiforov A (eds) Photon counting—fundamentals and applications. InTech, London

    Google Scholar 

  17. Marchal F, Berejny P, Sewraj N, Salamero Y, Millet P (2004) Energy transfers in Kr–Xe mixtures following selective multiphotonic excitation of Kr(3P1). Temporal analysis in Kr–Xe mixtures. J Phys B At Mol Opt Phys 37:1279–1304

    Article  CAS  Google Scholar 

  18. Merbahi N, Sewraj N, Marchal F, Gardou J-P (2010) Pressure dependence of a pure krypton mono-filamentary dielectric barrier discharge. Eur Phys J Appl Phys 49:13103

    Article  CAS  Google Scholar 

  19. Sewraj N, Merbahi N, Marchal F, Ledru G, Gardou JP (2009) VUV spectroscopy and post-discharge kinetic analysis of a pure xenon mono-filamentary dielectric barrier discharge (MF-DBD). J Phys Appl Phys 42:045206

    Article  CAS  Google Scholar 

  20. Baksht EK, Lomaev MI, Rybka DV, Tarasenko VF (2006) Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures. Quantum Electron 36:576–580

    Article  CAS  Google Scholar 

  21. Marchal F, jabbour G, Yousfi M, Ledru G, Sewraj N, Rodriguez-Akerreta (2009) Study of VUV emission of krypton using two-photon absorption laser induced fluorescence (TALIF) technique. ICPIG (Cancún, México)

  22. Sakurai T, Goto N, Webb CE (1987) Kr*2 excimer emission from multi-atmosphere discharges in Kr, Kr–He and Kr–Ne mixtures. J Phys Appl Phys 20:709–713

    Article  CAS  Google Scholar 

  23. Mishra AP, Kshirsagar RJ, Bellary VP, Balasubramanian TK (2000) Identification of new transitions in the first spectra of neon, krypton and xenon in the near infrared by Fourier transform spectroscopy. J Quant Spectrosc Radiat Transf 67:1–7

    Article  CAS  Google Scholar 

  24. Larbi Daho Bachir N, Belasri A (2013) A simplified numerical study of the Kr/Cl2 plasma chemistry in dielectric barrier discharge. Plasma Sci Technol 15:343–349

    Article  CAS  Google Scholar 

  25. Zvereva GN (2006) Investigation of the amplifying properties of a krypton gas discharge plasma. Opt Spectrosc 100:818–824

    Article  CAS  Google Scholar 

  26. Zvereva GN, Lomaev MI, Rybka DV, Tarasenko VF (2007) Possible application of a volume avalanche discharge initiated by an electron beam for designing a krypton dimer laser. Opt Spectrosc 102:30–37

    Article  CAS  Google Scholar 

  27. Gerasimov GN, Krylov BE, Zvereva GN, Hallin R, Arnesen A, Heijkenskjld F (1996) VUV spectrum of krypton excimers excited in a cooled dc discharge. Opt Spectrosc 81:857–864

    Google Scholar 

  28. Suplee C (2009) Atomic spectra database. NIST

  29. Kawanaka J, Shirai T, Kubodera S, Sasaki W (2001) 1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas. Appl Phys Lett 79:3752–3754

    Article  CAS  Google Scholar 

  30. Holroyd RA, Cook AR, Preses JM (2009) Dynamics of excimer formation and decay in supercritical krypton. J Chem Phys 131:224509

    Article  CAS  PubMed  Google Scholar 

  31. Humphreys CJ, Plyler EK (1947) Infrared emission spectra of krypton and argon. J Res Natl Bur Stand 38:499

    Article  CAS  Google Scholar 

  32. Hart DJ, Bourne OL, Rayner DM (1989) Narrow bandwidth coherent VUV spectroscopy of the Kr 123.58 nm line. Opt Commun 73:213–216

    Article  CAS  Google Scholar 

  33. Babichev VN, Dem’yanov AV, Dyatko NA, Pal’ A F, Starostin AN, Filippov AV (2017) Experimental and theoretical study of the near IR emission of xenon excited by a fast electron beam. Plasma Phys Rep 43:515–532

    Article  CAS  Google Scholar 

  34. Eckstrom DJ, Nakano HH, Lorents DC, Rothem T, Betts JA, Lainhart ME, Triebes KJ, Dakin DA (1988) Characteristics of electron-beam-excited Kr*2 at low pressures as a vacuum ultraviolet source. J Appl Phys 64:1691–1695

    Article  CAS  Google Scholar 

  35. Ito Y, Arai S (1984) Kinetic study of excited diatomic molecules of krypton and xenon. Bull Chem Soc Jpn 57:3062–3065

    Article  CAS  Google Scholar 

  36. Salamero Y, Birot A, Brunet H, Galy J, Millet P, Montagne JP (1979) Spectroscopic and kinetic studies of the VUV emissions of krypton. J Phys B At Mol Phys 12:419–425

    Article  CAS  Google Scholar 

  37. Sansonetti JE, Martin WC (2005) Handbook of basic atomic spectroscopic data. J Phys Chem Ref Data 34:1559–2259

    Article  CAS  Google Scholar 

  38. Treshchalov AB, Lissovski AA (2012) Multi-band spectral structure and kinetics of the third continua in Ar, Kr and Xe gases excited by a pulsed discharge. Eur Phys J D 66:95

    Article  CAS  Google Scholar 

  39. Marchal F, Berejny P, Sewraj N, Salamero Y, Millet P (2004) Energy transfers in Kr–Xe mixtures following selective multiphotonic excitation of Kr(3P1). Temporal analysis in Kr–Xe mixtures. J Phys B At Mol Opt Phys 37:1279–1304

    Article  CAS  Google Scholar 

  40. Boeuf JP, Bernecker B, Callegari Th, Blanco S, Fournier R (2012) Generation, annihilation, dynamics and self-organized patterns of filaments in dielectric barrier discharge plasmas. Appl Phys Lett 100:244108

    Article  CAS  Google Scholar 

  41. Bogdanov EA, Kudryavtsev AA, Arslanbekov RR, Kolobov VI (2004) Simulation of pulsed dielectric barrier discharge xenon excimer lamp. J Phys D Appl Phys 37:2987–2995

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjet Larbi Daho Bachir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larbi Daho Bachir, N., Belasri, A., Guillot, P. et al. Radiative Emissions in Visible–IR of Krypton Excilamp: Experimental and Theoretical Interpretations. Plasma Chem Plasma Process 39, 1243–1254 (2019). https://doi.org/10.1007/s11090-019-09999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09999-0

Keywords

Navigation