Skip to main content

Advertisement

Log in

Incongruence between life-history traits and conservation status in reef corals

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

A Correction to this article was published on 04 March 2020

This article has been updated

Abstract

Comparative lists of species’ extinction risk are increasingly being used to prioritise conservation resources. Extinction risk is most rigorously assessed using quantitative data on species’ population trajectories, but in the absence of such data, assessments often rely on qualitative estimates based on expert opinion of species abundances, distributions and threats. For example, one-third of coral species are classified as threatened and another third as near threatened on the IUCN Red List, despite a lack of data at the population level for the vast majority of species. Since many taxa show a strong correlation between species traits and extinction risk, an alternate approach is to identify traits associated with extinction in other groups and apply them to the taxon of interest. Here, we examine whether life-history traits associated with stress tolerance, fecundity and habitat specialisation are correlated with Red List conservation status in reef corals. We found no relationship between conservation status and life-history traits, suggesting that either traits identified as important predictors of extinction risk in other taxa are not important in corals, or that conservation status does not accurately reflect species’ relative extinction risk. Therefore, using global-scale extinction risk assessments to inform conservation of coral reefs presents a high risk of ‘silent extinctions’ of undescribed species. We argue that the conservation status for the vast majority of coral species should be ‘data deficient’ and is likely to remain so for the foreseeable future, and that the status and trends of coral populations can only be reliably assessed at relatively small scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 04 March 2020

    This erratum is published as vendor overlooked corrections with misspelt scientific wording of family Siderastreidae.

References

  • Agapow PM, Bininda-Emonds ORP, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A (2004) The impact of species concept on biodiversity. Q Rev Biol 79:161–179

    PubMed  Google Scholar 

  • Arrigoni R, Terraneo TI, Galli P, Benzoni F (2014a) Lobophylliidae (Cnidaria, Scleractinia) reshuffled: pervasive non-monophyly at genus level. Molecular Phylogenetics and Evolution 73:60–64

    PubMed  Google Scholar 

  • Arrigoni R, Kitano YF, Stolarski J, Hoeksema BW, Fukami H, Stefani F, Galli P, Montano S, Castoldi E, Benzoni F (2014b) A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zoologica Scripta 43:661–688

    Google Scholar 

  • Arrigoni R, Benzoni F, Terraneo TI, Caragnano A, Berumen ML (2016) Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea. Sci Rep 6:34612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aronson RB, Macintyre IG, Wapnick CM, O’Neill MW (2004) Phase shifts, alternative states, and the unprecedented convergence of two reef systems. Ecology 85:1876–1891

    Google Scholar 

  • Baird AH, Hoogenboom MO, Huang D (2017) Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys 662:49

    Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GO, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    CAS  PubMed  Google Scholar 

  • Bellwood DR, Pratchett MS, Morrison TH, Gurney GG, Hughes TP, Álvarez-Romero JG, Day JC, Grantham R, Grech A, Hoey AS, Jones GP (2019) Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biological conservation 236:604–615

    Google Scholar 

  • Bland LM, Bielby J, Kearney S, Orme CDL, Watson JEM, Collen B (2017) Toward reassessing data-deficient species. Conserv Biol 31:531–539

    PubMed  Google Scholar 

  • Cardillo M, Meijaard E (2011) Are comparative studies of extinction risk useful for conservation? Trends Ecol Evol 27:167–171

    PubMed  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GJ (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    CAS  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curnick DJ, Head CE, Huang D, Crabbe MJ, Gollock M, Hoeksema BW, Johnson KG, Jones R, Koldewey HJ, Obura DO, Rosen BR (2015) Setting evolutionary-based conservation priorities for a phylogenetically data-poor taxonomic group (Scleractinia). Anim Conserv 18:303–312

    Google Scholar 

  • DeVantier L, Turak E (2017) Species richness and relative abundance of reef-building corals in the Indo-West Pacific. Diversity 9(3):25. https://doi.org/10.3390/d9030025

    Article  Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13:1030–1040

    PubMed  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    CAS  PubMed  Google Scholar 

  • Foden WB, Butchart SH, Stuart SN, Vié JC, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L, Donner SD (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PloS one 8(6):e65427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami H, Budd AF, Paulay G, Solé-Cava A, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835

    CAS  PubMed  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440(7088):1186

    CAS  PubMed  Google Scholar 

  • Harnik PG, Simpson C, Payne JL (2012) Long-term differences in extinction risk among the seven forms of rarity. Proc R Soc B 279:4969–4976

    PubMed  PubMed Central  Google Scholar 

  • Hazevoet CJ (1996) Conservation and species lists: taxonomic neglect promotes the extinction of endemic birds, as exemplified by taxa from eastern Atlantic islands. Bird Conservation International 6:181–196

    Google Scholar 

  • Hoeksema BW, Cairns S (2019) World list of scleractinia. World register of Marine Species at http://marinespecies.org/aphia.php?p=taxdetails&id=1317956. Accessed 16 Dec 2019

  • Howard SD, Bickford DP (2014) Amphibians over the edge: silent extinction risk of data deficient species. Divers Distrib 20:837–846

    Google Scholar 

  • Huang D (2012) Threatened reef corals of the world. PLoS One 7(3):e34459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Licuanan WY, Baird AH, Fukami H (2011) Cleaning up the’Bigmessidae’: Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC evolutionary biology 11:37

    PubMed  PubMed Central  Google Scholar 

  • Huang D, Roy K (2015) The future of evolutionary diversity in reef corals. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20140010

    Google Scholar 

  • Hughes TP, Bellwood DR, Connolly SR, Cornell HV, Karlson RH (2014) Double jeopardy and global extinction risk in corals and reef fishes. Curr Biol 24:2946–2951

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC (2018a) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ (2018b) Global warming transforms coral reef assemblages. Nature 556:492–496

    CAS  PubMed  Google Scholar 

  • Johnson KG, Budd AF, Stemann TA (1995) Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21:52–73

    Google Scholar 

  • Keith SA, Woolsey ES, Madin JS, Byrne M, Baird AH (2015) Differential establishment potential of species predicts a shift in coral assemblage structure across a biogeographic barrier. Ecography 38:1225–1234

    Google Scholar 

  • Kerr AM, Baird AH, Hughes TP (2011) Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proc R Soc B 278:75–81

    PubMed  Google Scholar 

  • Kitahara MV, Fukami H, Benzoni F, Huang D (2016) The new systematics of Scleractinia: integrating molecular and morphological evidence. In The Cnidaria, Past, Present and Future (pp. 41-59). Springer International Publishing

  • Kuo C-Y (2017) Adaptive strategies in reef-building corals. PhD Thesis, James Cook University, Townsville, Australia

  • Luiz OJ, Woods RM, Madin EM, Madin JS (2016) Predicting IUCN extinction risk categories for the world’s data deficient groupers (Teleostei: Epinephelidae). Conserv Lett 9:342–350

    Google Scholar 

  • Madin JS, Anderson KD, Andreasen MH, Bridge TC, Cairns SD, Connolly SR, Darling ES, Diaz M, Falster DS, Franklin EC et al (2016a) The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci Data 3:160017

    PubMed  PubMed Central  Google Scholar 

  • Madin JS, Hoogenboom MO, Connolly SR, Darling ES, Falster DS, Huang D, Keith SA, Mizerek T, Pandolfi JM, Putnam HM, Baird AH (2016b) A trait-based approach to advance coral reef science. Trends Ecol Evol 31:419–428

    PubMed  Google Scholar 

  • McWilliam M, Hoogenboom MO, Baird AH, Kuo CY, Madin JS, Hughes TP (2018) Biogeographical disparity in the functional diversity and redundancy of corals. Proc Natl Acad Sci USA 115:3084–3089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muir PR, Marshall PA, Abdulla A, Aguirre JD (2017) Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef? Proceedings of the Royal Society B: Biological Sciences 284:20171551

    PubMed  PubMed Central  Google Scholar 

  • Muir PR, Pichon M, Squire L, Wallace CC (2019) Acropora tenella, a zooxanthellate coral extending to 110-m depth in the northern Coral Sea. Mar Biodivers 49(2):809–814

    Google Scholar 

  • Payne JL, Finnegan S (2007) The effect of geographic range on extinction risk during background and mass extinction. Proc Natl Acad Sci USA 104:10506–10511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214

    PubMed  Google Scholar 

  • Possingham HP, Andelman SJ, Burgman MA, Medellín RA, Master LL, Keith DA (2002) Limits to the use of threatened species lists. Trends Ecol Evol 17:503–507

    Google Scholar 

  • Purvis A, Agapow PM, Gittleman JL, Mace GM (2000a) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330

    CAS  PubMed  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000b) Predicting extinction risk in declining species. Proc R Soc B 267:1947–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgeway G (2006) Generalized boosted regression models. Documentation on the R Package ‘gbm’, version 1:5–7

  • Roberts TE, Bridge TCL, Caley MJ, Madin JS, Baird AH (2019a) Resolving the depth zonation paradox in reef corals. Ecology. https://doi.org/10.1002/ecy.2761

    Article  PubMed  Google Scholar 

  • Roberts TE, Keith SA, Rahbek C, Bridge TCL, Caley MJ, Baird AH (2019b) Testing biodiversity theory using species richness of reef-building corals across a depth gradient. Biology Letters 15:20190493

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues AS, Pilgrim JD, Lamoreux JF, Hoffmann M, Brooks TM (2006) The value of the IUCN Red List for conservation. Trends Ecol Evol 21:71–76

    PubMed  Google Scholar 

  • Russell GJ, Brooks TM, McKinney MM, Anderson CG (1998) Present and future taxonomic selectivity in bird and mammal extinctions. Conserv Biol 12:1365–1376

    Google Scholar 

  • Scheffers BR, De Meester L, Bridge TC, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SH, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M (2016) The broad footprint of climate change from genes to biomes to people. Science 354:aaf7671

    PubMed  Google Scholar 

  • Schmidt-Roach S, Lundgren P, Miller KJ, Gerlach G, Noreen AM, Andreakis N (2013) Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs 32:161–172

    Google Scholar 

  • Tietje M, Rodel M (2018) Evaluating the predicted extinction risk of living amphibian species with the fossil record. Ecol Lett 21:1135–1142

    PubMed  Google Scholar 

  • van Woesik R, Franklin EC, O’Leary J, McClanahan TR, Klaus JS, Budd AF (2012) Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc R Soc B 279:2448–2456

    PubMed  PubMed Central  Google Scholar 

  • Veron JEN (2000) Corals of the World. Australian Institute of Marine Science, Townsville, p 1382

    Google Scholar 

  • Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20:1512–1522

    PubMed  Google Scholar 

  • Wallace C (1999) Staghorn corals of the world: a revision of the genus Acropora. CSIRO publishing

  • Webb TJ, Mindel JB (2015) Global Patterns of Extinction Risk in Marine and Non-marine Systems. Curr Biol 25:506–511

    CAS  PubMed  Google Scholar 

  • Wilkinson C (2004) Status of coral reefs of the world. AIMS, Townsville

    Google Scholar 

  • Zawada KJ, Madin JS, Baird AH, Bridge TC, Dornelas M (2019) Morphological traits can track coral reef responses to the Anthropocene. Functional Ecology 33:962–975

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Research Council Centre of Excellence for Coral Reef Studies and Australian Research Council Discovery Early Career Researcher Award fellowship to T. Bridge (DE180100746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. L. Bridge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridge, T.C.L., Luiz, O.J., Kuo, CY. et al. Incongruence between life-history traits and conservation status in reef corals. Coral Reefs 39, 271–279 (2020). https://doi.org/10.1007/s00338-019-01885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01885-7

Keywords

Navigation