Skip to main content
Log in

An Aqueous Phase TEMPO-Mediated Electrooxidation of Benzyl Alcohol at β-CD-PPy-Modified Carbon Fibre Paper Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A green and facile electrocatalytic method for the oxidation of benzyl alcohol in an acidic aqueous medium was developed using an anionic micellar system. β-cyclodextrin-polypyrrole-modified carbon fibre paper (β-CD-PPy/CFP) electrode was successfully used in the oxidation of benzyl alcohol with TEMPO as the mediator. The modified electrode was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The modified electrode exhibited a strong electrocatalytic activity towards TEMPO-mediated oxidation of benzyl alcohol.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Ragupathi, J.J. Vijayaa, S. Narayanan, S.K. Jesudoss, L.J. Kennedy, Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: A comparison of conventional and microwave methods. Ceram. Int. 41, 2069–2080 (2015). https://doi.org/10.1016/j.ceramint.2014.10.002

    Article  CAS  Google Scholar 

  2. F. Brühne, E. Wright, Benzaldehyde, in Ullmann’s encyclopedia of industrial chemistry (Wiley-VCH, Weinheim, 2011). https://doi.org/10.1002/14356007.a03_463.pub2

    Book  Google Scholar 

  3. M. Hudlicky, Oxidations in organic chemistry (American Chemical Society, Washington, 1990)

    Google Scholar 

  4. K. Sato, M. Aoki, J. Takagi, R. Noyori, Organic solvent- and halide-free oxidation of alcohols with aqueous hydrogen peroxide. J. Am. Chem. Soc. 119, 12386–12387 (1997). https://doi.org/10.1021/ja973412p

    Article  CAS  Google Scholar 

  5. A. Jia, L.-L. Lou, C. Zhang, Y. Zhang, S. Liu, Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over alkali-treated ZSM-5 zeolite catalysts. J. Mol. Catal. A Chem. 306, 123–129 (2009). https://doi.org/10.1016/j.molcata.2009.02.035

    Article  CAS  Google Scholar 

  6. G. Ming-Lin, L. Hui-Zhena, Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over tetra-alkylpyridinium octamolybdate catalysts. Green Chem. 9, 421–423 (2007). https://doi.org/10.1039/B700534B

    Article  Google Scholar 

  7. Y. Yu, B. Lu, X. Wang, J. Zhao, X. Wang, Q. Cai, Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis. Chem. Eng. J. 162, 738–742 (2010). https://doi.org/10.1016/j.cej.2010.05.057

    Article  CAS  Google Scholar 

  8. R. Noyori, M. Aokib, K. Satoc, Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 16, 1977–1986 (2003). https://doi.org/10.1039/B303160H

    Article  Google Scholar 

  9. Y. Chen, H. Lim, Q. Tang, Y. Gao, T. Sun, Q. Yan, Y. Yang, Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Appl. Catal. A. General. 380, 55–65 (2010). https://doi.org/10.1016/j.apcata.2010.03.026

    Article  CAS  Google Scholar 

  10. D. Obermayer, A.M. Balu, A.A. Romero, W. Goessler, R. Luque, C.O. Kappe, Nanocatalysis in continuous flow: Supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol. Green Chem. 15, 1530–1537 (2010). https://doi.org/10.1039/C3GC40307F

    Article  Google Scholar 

  11. X. Yua, Y. Huoa, J. Yanga, S. Changa, Y. Ma, W. Huang, Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol. Appl. Surf. Sci. 280, 450–455 (2013). https://doi.org/10.1016/j.apsusc.2013.05.008

    Article  CAS  Google Scholar 

  12. C. Zhou, Y. Chen, Z. Guo, X. Wang, Y. Yang, Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide. Chem. Commun. 47, 7473–7475 (2011). https://doi.org/10.1039/C1CC12264A

    Article  CAS  Google Scholar 

  13. C.A. Wilde, Y. Ryabenkova, I.M. Firtha, L. Pratt, J. Railton, M. Bravo-Sanchez, N. Sano, P.J. Cumpson, P.D. Coates, X. Liu, M. Conte, Novel rhodium on carbon catalysts for the oxidation of benzyl alcohol to benzaldehyde: A study of the modification of metal/support interactions by acid pre-treatments. Appl. Catal. A. General. 570, 271–282 (2019). https://doi.org/10.1016/j.apcata.2018.11.006

    Article  CAS  Google Scholar 

  14. Y. Kwon, S.C. Lai, P. Rodriguez, M.T.M. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis. J. Am. Chem. Soc. 133(18), 6914–6917 (2011). https://doi.org/10.1021/ja200976j

    Article  CAS  PubMed  Google Scholar 

  15. S. Yamazaki, M. Yao, N. Fujiwara, Z. Siroma, K. Yasuda, T. Ioroi, Electrocatalytic oxidation of alcohols by a carbon-supported Rh porphyrin. Chem. Commun. 48, 4353–4355 (2012). https://doi.org/10.1039/C2CC30888F

    Article  CAS  Google Scholar 

  16. Y. Zhu, J. Zhang, Z. Chen, A. Zhang, C. Ma, Synthesis of nitrocarbazole compounds and their electrocatalytic oxidation of alcohol. Chin. J. Catal. 37, 533–538 (2016). https://doi.org/10.1016/S1872-2067(15)61047-6

    Article  CAS  Google Scholar 

  17. L.T. Tran, Q.M. Nguyen, M.D. Nguyen, H.N.T. Le, T.T. Nguyen, T.H.T. Vu, Preparation and electrocatalytic characteristics of the Pt-based anode catalysts for ethanol oxidation in acid and alkaline media. Int. J. Hydrogen Energ. 45, 20563–20572 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.049

    Article  CAS  Google Scholar 

  18. E.K. Joice, A. Varghese, Y.N. Sudhakar, B. Ganesh, J. Selvaraj, Poly(aniline) decorated with nanocactus platinum on carbon fiber paper and its electrocatalytic behavior toward toluene oxidation. J. Electrochem. Soc. 165, H399–H406 (2018). https://doi.org/10.1149/2.1121807jes

    Article  CAS  Google Scholar 

  19. S.B. Adeloju, G.G. Wallace, Conducting polymers and the bioanalytical sciences: New tools for biomolecular communications. A review. Analyst. 121(6), 699–703 (1996). https://doi.org/10.1039/AN9962100699

    Article  CAS  PubMed  Google Scholar 

  20. A. Ramanavičius, A. Ramanavičienė, A. Malinauskas, Electrochemical sensors based on conducting polymer – Polypyrrole. Electrochim. Acta 51, 6025–6037 (2006). https://doi.org/10.1016/j.electacta.2005.11.052

    Article  CAS  Google Scholar 

  21. S. Cosnier, A. Deronzier, A. Llobet, Triruthenium cluster-polypyrrole films: A remarkably stable immobilized relay at highly positive potentials: Its application to the electrocatalytic oxidation of benzyl alcohol. J. Electroanal. Chem. Interfacial Electrochem. 280, 213–219 (1990). https://doi.org/10.1016/0022-0728(90)87099-6

    Article  CAS  Google Scholar 

  22. L.M. Chen, Y.L. Chen, S.H. Wang, T.C. Chou, Anodic oxidation of benzyl alcohol with and without redox mediators using modified electrodes. J. Chin. Inst. Chem. Eng. 34, 399–404 (2003). https://doi.org/10.6967/JCICE.200307.0399

    Article  CAS  Google Scholar 

  23. N. Izaoumen, D. Bouchta, H. Zejlia, M.E. Kaoutita, A.M. Stalcup, K.R. Temsamani, Electrosynthesis and analytical performances of functionalized poly (pyrrole/β-cyclodextrin) films. Talanta. 66, 111–117 (2005). https://doi.org/10.1016/j.talanta.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  24. N. Izaoumen, D. Bouchta, H. Zejli, M.E. Kaoutit, K.R. Temsamani, The electrochemical behavior of neurotransmitters at a poly (pyrrole- β-cyclodextrin) modified glassy carbon electrode. Anal. Lett. 38, 1869–1885 (2005). https://doi.org/10.1080/00032710500230855

    Article  CAS  Google Scholar 

  25. L. Fritea, A.L. Goff, J.-L. Putaux, M. Tertisc, C. Cristeac, R. Săndulescuc, S. Cosnier, Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochim. Acta 178, 108–112 (2015). https://doi.org/10.1016/j.electacta.2015.07.124

    Article  CAS  Google Scholar 

  26. S. Palanisamy, K. Thangavelu, S.-M. Chenac, V. Velusamy, M.-H. Changa, T.-W. Chena, M.A. Fahad, M. Al-Hemaid, A.A. Sayee, K. Ramaraj, Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sensors Actuators B Chem. 243, 888–894 (2017). https://doi.org/10.1016/j.snb.2016.12.068

    Article  CAS  Google Scholar 

  27. V. Selvaraj, M. Alagar, Pt and Pt–Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun. 9, 1145–1153 (2007). https://doi.org/10.1016/j.elecom.2007.01.011

    Article  CAS  Google Scholar 

  28. S. Ta§cioǧlu, Micellar solutions as reaction media. Tetrahedron 52, 11113–11152 (1996). https://doi.org/10.1016/0040-4020(96)00669-2

    Article  Google Scholar 

  29. A. Graciaa, J. Lachaise, G. Morel, J.L. Salager, M. Bourrel, Optimal phase behavior of water/oil blend/surfactant systems. Trends Colloid. Interf. Sci VII, 257–260 (1993). https://doi.org/10.1007/BFb0118539

    Article  Google Scholar 

  30. H. Tohma, S. Takizawa, H. Watanabe, Y. Kita, Hypervalent iodine (III) oxidation catalyzed by quaternary ammonium salt in micellar systems. Tetrahedron Lett. 39, 4547–4550 (1998). https://doi.org/10.1016/S0040-4039(98)00828-4

    Article  CAS  Google Scholar 

  31. D. Das, U. Dash, J. Meher, P.K. Misra, Improving stability of concentrated coal - water slurry using mixture of a natural and synthetic surfactants. Fuel Process. Technol. 113, 41–51 (2013). https://doi.org/10.1016/j.fuproc.2013.02.021

    Article  CAS  Google Scholar 

  32. H. Tohma, S. Takizawa, H. Watanabe, Y. Fukuoka, T. Maegawa, Y. Kita, Hypervalent iodine (v) - induced asymmetric oxidation of sulfides to sulfoxides mediated by reversed micelles: Novel nonmetallic catalytic system. J. Organomet. Chem. 64(10), 3519–3523 (1999). https://doi.org/10.1021/jo982295t

    Article  CAS  Google Scholar 

  33. Q. He, S. Yuan, C. Chen, H. Shengshui, Electrochemical properties of estradiol at glassy carbon electrode modified with nano-Al2O3 film. Mater. Sci. Eng. C 23, 621–625 (2003). https://doi.org/10.1016/S0928-4931(03)00053-5

    Article  CAS  Google Scholar 

  34. Y. Yan, X. Tong, K. Wang, X. Bai, Highly efficient and selective aerobic oxidation of alcohols in aqueous media by TEMPO-containing catalytic systems. Catal. Commun. 43, 112–115 (2014). https://doi.org/10.1016/j.catcom.2013.09.022

    Article  CAS  Google Scholar 

  35. C. Zhu, Y. Wei, J. Lei, Catalytic oxidation of alcohols to corresponding aldehydes or ketones with TEMPO - mediated iodosobenzene in water in the presence of a surfactant. Synth. Commun. 40, 2057–2066 (2010). https://doi.org/10.1080/00397910903219427

    Article  CAS  Google Scholar 

  36. R.A. Green, J.T. Hill-Cousins, R.C.D. Brown, D. Pletchera, S.G. Leach, A voltammetric study of the 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) mediated oxidation of benzyl alcohol in tert-butanol/water. Electrochim. Acta 113, 550–556 (2013). https://doi.org/10.1016/j.electacta.2013.09.070

    Article  CAS  Google Scholar 

  37. P. Gamez, I.W.C.E. Arends, R.A. Sheldon, J. Reedijk, Room temperature aerobic copper–catalysed selective oxidation of primary alcohols to aldehydes. Adv. Synth. Catal. 346, 805–811 (2004). https://doi.org/10.1002/adsc.200404063

    Article  CAS  Google Scholar 

  38. J. Lu, J. Ma, J. Yi, Z. Shen, Y. Zhong, C. Ma, M. Li, Electrochemical polymerization of pyrrole containing TEMPO side chain on pt electrode and its electrochemical activity. Electrochim. Acta 130, 412–417 (2014). https://doi.org/10.1016/j.electacta.2014.03.028

    Article  CAS  Google Scholar 

  39. A.J. Shakir, D.C. Culita, J. Calderon-Moreno, A. Musuc, O. Carp, G. Ionita, P. Ionita, Covalently grafted TEMPO on graphene oxide: A composite material for selective oxidations of alcohols. Carbon. 105, 607–614 (2016). https://doi.org/10.1016/j.carbon.2016.05.006

    Article  CAS  Google Scholar 

  40. J. Yi, J. Lu, D. Song, M. Li, Z. Shen, Electrochemical oxidation of benzyl alcohol on platinum electrode with TEMPO in CH3CN/H2O. Asian J. Chem 27, 3197–3200 (2015). https://doi.org/10.14233/ajchem.2015.18373

    Article  CAS  Google Scholar 

  41. Y. Haw, S.K. Song, Electrochemical behavior of a TEMPO - modified electrode and its electrocatalytic oxidation of benzyl alcohol. Anal. Sci. 13, 329–331 (1997). https://doi.org/10.2116/analsci.13.Supplement_329

    Article  Google Scholar 

  42. G. Palmisano, R. Ciriminna, M. Pagliaro, Waste-free electrochemical oxidation of alcohols in water. Adv. Synth. Catal. 348, 2033–2037 (2006). https://doi.org/10.1002/adsc.200606199

    Article  CAS  Google Scholar 

  43. K.B. Akshaya, A. Varghese, M. Nidhin, L. George, Amorphous Ru-Pi nanoclusters coated on polypyrrole modified carbon fiber paper for non-enzymatic electrochemical determination of cholesterol. J. Electrochem. Soc. 166, B1016–B1027 (2019). https://doi.org/10.1149/2.1131912jes

    Article  CAS  Google Scholar 

  44. T. Sen, S. Mishra, N.G. Shimpi, A β-cyclodextrin based binary dopant for polyaniline: Structural, thermal, electrical, and sensing performance. Mater. Sci. Engg.: B 220, 13–21 (2017). https://doi.org/10.1016/j.mseb.2017.03.003

    Article  CAS  Google Scholar 

  45. S. Patra, N. Munichandraiah, Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate. J. Appl. Polym. Sci. 106, 1160–1171 (2007). https://doi.org/10.1002/app.26675

    Article  CAS  Google Scholar 

  46. K.B. Akshaya, T.P. Vinod, M. Nidhin, A. Varghese, L. George, PEDOT decorated with ptir nanoclusters on carbon fiber paper toward electrocatalytic reduction of a hypertensive drug olmesartan medoxomil. J. Electrochem. Soc. 165, B582–B595 (2018). https://doi.org/10.1149/2.0671813jes

    Article  CAS  Google Scholar 

  47. S.J. Vigmond, V. Ghaemmaghami, M. Thompson, Raman and resonance-Raman spectra of polypyrrole with application to sensor - gas probe interactions. Can. J. Chem. 73, 1711–1718 (1995). https://doi.org/10.1139/v95-209

    Article  CAS  Google Scholar 

  48. O. Egyed, Spectroscopic studies on β-cyclodextrin. Vib. Spectrosc. 1, 225–227 (1990). https://doi.org/10.1016/0924-2031(90)80041-2

    Article  CAS  Google Scholar 

  49. A. Ferancová, J. Labuda, Cyclodextrins as electrode modifiers. Fresenius J. Anal. Chem. 370(1), 1–10 (2001). https://doi.org/10.1007/s002160100752

    Article  PubMed  Google Scholar 

  50. E.K. Joice, S. Rison, K.B. Akshaya, A. Varghese, Platinum decorated polythiophene modified stainless steel for electrocatalytic oxidation of benzyl alcohol. J. App. Electrochem, 1–11 (2019). https://doi.org/10.1007/s10800-019-01336-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Anthem Biosciences Pvt. Ltd., Bengaluru for generously providing the surfactant samples for the studies. A portion of this research (characterizations) was performed using facilities at CeNSE, Indian Institute of Science, Bengaluru, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Varghese.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, K., Akshaya, K.B., Varghese, A. et al. An Aqueous Phase TEMPO-Mediated Electrooxidation of Benzyl Alcohol at β-CD-PPy-Modified Carbon Fibre Paper Electrode. Electrocatalysis 11, 234–246 (2020). https://doi.org/10.1007/s12678-019-00581-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00581-y

Keywords

Navigation