Skip to main content

Advertisement

Log in

Current In Vitro Assays for Prediction of T Cell Mediated Immunogenicity of Biotherapeutics and Manufacturing Impurities

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Biotherapeutics are a large and rapidly growing class of drugs being produced by pharmaceutical companies to treat a diverse range of clinical indications. The overall efficacy and safety of these products can be greatly impacted by their capacity to induce undesired immune responses. This review discusses in vitro cell-based methods used to assess the T cell mediated immunogenicity risk of proteinaceous therapeutic modalities and manufacturing impurities.

Methods

Here, we outline the potential sources and factors that influence immunogenicity. We present patient and product considerations that should be made in designing appropriate in vitro experiments that evaluate T cell epitopes capable of triggering treatment and outcome impacting anti-drug antibody responses and other adverse events.

Results

We present the current in vitro assays used to assess T cell activation towards biotherapeutics and the product impurities. Lastly, we outline the caveats, concerns, and challenges that remain with these cell-based assays.

Conclusions

Data generated from these in vitro antigenicity/immunogenicity assays may be used to derive immunogenicity risk assessments for programs and production processes and provides an opportunity for early selection of candidates or manufacturing impurities with lower likelihood of generating or exacerbating clinical immunogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.

    Article  CAS  PubMed  Google Scholar 

  2. Walsh G. Biopharmaceutical benchmarks 2018. Nat Biotechnol. 2018;36(12):1136–45.

    Article  CAS  PubMed  Google Scholar 

  3. FDA, U., Immunogenicity Assessment for Therapeutic Protein Products, H.a.H. Services, Editor. 2014, Guidance for industry: 10903 New Hampshire avenue, WO 71, room 3128 silver spring, MD 20993-0002.

  4. Vultaggio A, Nencini F, Pratesi S, Petroni G, Maggi E, Matucci A. Manifestations of antidrug antibodies response: hypersensitivity and infusion reactions. J Interf Cytokine Res. 2014;34(12):946–52.

    Article  CAS  Google Scholar 

  5. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002;2(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  6. van Brummelen EM, et al. Antidrug antibody formation in oncology: clinical relevance and challenges. Oncologist. 2016;21(10):1260–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. FDA, U., Immunogenicity Testing of Therapeutic Protein Products — Developing and Validating Assays for Anti-Drug Antibody Detection, H.a.H. Services, Editor. 2019: 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993–0002.

  8. EMA. Guideline on Immunogenicity Assessment of Therapeutic Proteins. 2017; Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en.pdf.

  9. van Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9(3):164–72.

    Article  PubMed  CAS  Google Scholar 

  10. Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ, Jukema JW, et al. Lipid-reduction variability and antidrug-antibody formation with Bococizumab. N Engl J Med. 2017;376(16):1517–26.

    Article  CAS  PubMed  Google Scholar 

  11. Lamberth, K., et al., Post hoc assessment of the immunogenicity of bioengineered factor VIIa demonstrates the use of preclinical tools. Sci Transl Med, 2017. 9(372).

  12. Agrawal S, Statkevich P, Bajaj G, Feng Y, Saeger S, Desai DD, et al. Evaluation of immunogenicity of Nivolumab Monotherapy and its clinical relevance in patients with metastatic solid tumors. J Clin Pharmacol. 2017;57(3):394–400.

    Article  CAS  PubMed  Google Scholar 

  13. Pineda C, Castañeda Hernández G, Jacobs IA, Alvarez DF, Carini C. Assessing the immunogenicity of biopharmaceuticals. BioDrugs. 2016;30(3):195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurki, P., Compatibility of immunogenicity guidance by the EMA and the US FDA. Bioanalysis, 2019. 0(0): p. null.

  15. Barbosa MD, Vielmetter J, Chu S, Smith DD, Jacinto J. Clinical link between MHC class II haplotype and interferon-beta (IFN-beta) immunogenicity. Clin Immunol. 2006;118(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  16. Hamze M, et al. Characterization of CD4 T cell epitopes of infliximab and rituximab identified from healthy donors. Front Immunol. 2017;8:500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vultaggio A, Petroni G, Pratesi S, Nencini F, Cammelli D, Milla M, et al. Circulating T cells to infliximab are detectable mainly in treated patients developing anti-drug antibodies and hypersensitivity reactions. Clin Exp Immunol. 2016;186(3):364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazor R, Eberle JA, Hu X, Vassall AN, Onda M, Beers R, et al. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes. Proc Natl Acad Sci U S A. 2014;111(23):8571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Unanue ER, Turk V, Neefjes J. Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol. 2016;34:265–97.

    Article  CAS  PubMed  Google Scholar 

  20. Lee JI, Choi YJ, Park HJ, Jung KC, Park SH. RD-05, a novel anti-CD154 antibody, efficiently inhibits generation of anti-drug antibody without the risk of thrombus formation in non-human primates. Biochem Biophys Res Commun. 2018;498(4):996–1001.

    Article  CAS  PubMed  Google Scholar 

  21. Bachelet D, Hässler S, Mbogning C, Link J, Ryner M, Ramanujam R, et al. Occurrence of anti-drug antibodies against interferon-Beta and Natalizumab in multiple sclerosis: a collaborative cohort analysis. PLoS One. 2016;11(11):e0162752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol. 2017;17(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  23. De Groot AS, et al. HLA- and genotype-based risk assessment model to identify infantile onset pompe disease patients at high-risk of developing significant anti-drug antibodies (ADA). Clin Immunol. 2019;200:66–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zota V, et al. HLA-DR alleles in amyloid beta-peptide autoimmunity: a highly immunogenic role for the DRB1*1501 allele. J Immunol. 2009;183(5):3522–30.

    Article  CAS  PubMed  Google Scholar 

  25. Zarate YA, Hopkin RJ. Fabry's disease. Lancet. 2008;372(9647):1427–35.

    Article  CAS  PubMed  Google Scholar 

  26. Harmatz, P., et al., Enzyme replacement therapy for mucopolysaccharidosis VI: A phase 3, randomized, double-blind, placebo-controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. The Journal of Pediatrics, 2006. 148(4): p. 533–539.e6.

  27. Berrier KL, Kazi ZB, Prater SN, Bali DS, Goldstein J, Stefanescu MC, et al. CRIM-negative infantile Pompe disease: characterization of immune responses in patients treated with ERT monotherapy. Genet Med. 2015;17(11):912–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346(7):469–75.

    Article  CAS  PubMed  Google Scholar 

  29. Vultaggio A, Matucci A, Parronchi P, Rossi O, Palandri F, Romagnani S, et al. Safety and tolerability of infliximab therapy: suggestions and criticisms based on wide clinical experience. Int J Immunopathol Pharmacol. 2008;21(2):367–74.

    Article  CAS  PubMed  Google Scholar 

  30. Van Walle I, et al. Immunogenicity screening in protein drug development. Expert Opin Biol Ther. 2007;7(3):405–18.

    Article  PubMed  CAS  Google Scholar 

  31. Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer. 2019;7(1):105.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jurewicz MM, Stern LJ. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics. 2019;71(3):171–87.

    Article  CAS  PubMed  Google Scholar 

  33. Attias M, Al-Aubodah T, Piccirillo CA. Mechanisms of human FoxP3(+) Treg cell development and function in health and disease. Clin Exp Immunol. 2019.

  34. Cousens L, Najafian N, Martin WD, de Groot AS. Tregitope: immunomodulation powerhouse. Hum Immunol. 2014;75(12):1139–46.

    Article  CAS  PubMed  Google Scholar 

  35. Garcês S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72(12):1947–55.

    Article  PubMed  CAS  Google Scholar 

  36. Salazar-Fontana LI, Desai DD, Khan TA, Pillutla RC, Prior S, Ramakrishnan R, et al. Approaches to mitigate the unwanted immunogenicity of therapeutic proteins during drug development. AAPS J. 2017;19(2):377–85.

    Article  CAS  PubMed  Google Scholar 

  37. Passey C, Mora J, Dodge R, Gibiansky L, Sheng J, Roy A, et al. An integrated assessment of the effects of immunogenicity on the pharmacokinetics, safety, and efficacy of Elotuzumab. AAPS J. 2017;19(2):557–67.

    Article  CAS  PubMed  Google Scholar 

  38. Krieckaert CL, Bartelds GM, Lems WF, Wolbink GJ. The effect of immunomodulators on the immunogenicity of TNF-blocking therapeutic monoclonal antibodies: a review. Arthritis Res Ther. 2010;12(5):217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sauna ZE, Lagassé D, Pedras-Vasconcelos J, Golding B, Rosenberg AS. Evaluating and mitigating the immunogenicity of therapeutic proteins. Trends Biotechnol. 2018;36(10):1068–84.

    Article  CAS  PubMed  Google Scholar 

  40. Ross C, Clemmesen KM, Svenson M, Sørensen PS, Koch-Henriksen N, Skovgaard GL, et al. Immunogenicity of interferon-b in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Ann Neurol. 2000;48(5):706–12.

    Article  CAS  PubMed  Google Scholar 

  41. Schellekens, H., Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant, 2005. 20 Suppl 6: p. vi3–9.

  42. Rudick RA, Goelz SE. Beta-interferon for multiple sclerosis. Exp Cell Res. 2011;317(9):1301–11.

    Article  CAS  PubMed  Google Scholar 

  43. Barnard JG, Babcock K, Carpenter JF. Characterization and quantitation of aggregates and particles in interferon-beta products: potential links between product quality attributes and immunogenicity. J Pharm Sci. 2013;102(3):915–28.

    Article  CAS  PubMed  Google Scholar 

  44. Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  45. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, et al. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105(2):417–30.

    Article  CAS  PubMed  Google Scholar 

  46. Rubic-Schneider T, Kuwana M, Christen B, Aßenmacher M, Hainzl O, Zimmermann F, et al. T-cell assays confirm immunogenicity of tungsten-induced erythropoietin aggregates associated with pure red cell aplasia. Blood Adv. 2017;1(6):367–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hock MB, Thudium KE, Carrasco-Triguero M, Schwabe NF. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 2015;17(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  48. Xue L, et al. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody. Clin Exp Immunol. 2016;183(1):102–13.

    Article  CAS  PubMed  Google Scholar 

  49. Hua F, Comer GM, Stockert L, Jin B, Nowak J, Pleasic-Williams S, et al. Anti-IL21 receptor monoclonal antibody (ATR-107): safety, pharmacokinetics, and pharmacodynamic evaluation in healthy volunteers: a phase I, first-in-human study. J Clin Pharmacol. 2014;54(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  50. de Zafra CL, Quarmby V, Francissen K, Vanderlaan M, Zhu-Shimoni J. Host cell proteins in biotechnology-derived products: a risk assessment framework. Biotechnol Bioeng. 2015;112(11):2284–91.

    Article  PubMed  CAS  Google Scholar 

  51. Bracewell DG, Francis R, Smales CM. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnol Bioeng. 2015;112(9):1727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vanderlaan M, Zhu-Shimoni J, Lin S, Gunawan F, Waerner T, van Cott K. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol Prog. 2018;34(4):828–37.

    Article  CAS  PubMed  Google Scholar 

  53. Romer T, Peter F, Saenger P, Starzyk J, Koehler B, Korman E, et al. Efficacy and safety of a new ready-to-use recombinant human growth hormone solution. J Endocrinol Investig. 2007;30(7):578–89.

    Article  CAS  Google Scholar 

  54. EMA. Omnitrope: EPAR-Scientific Discussion. 2006 [cited 2019; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000607/WC500043692.pdf.

  55. Jawa V, Joubert MK, Zhang Q, Deshpande M, Hapuarachchi S, Hall MP, et al. Evaluating immunogenicity risk due to host cell protein impurities in antibody-based biotherapeutics. AAPS J. 2016;18(6):1439–52.

    Article  CAS  PubMed  Google Scholar 

  56. Polumuri SK, Haile LA, Ireland DDC, Verthelyi D. Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities. Sci Rep. 2018;8(1):11477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem. 2012;287(30):25266–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahmadi M, Bryson CJ, Cloake EA, Welch K, Filipe V, Romeijn S, et al. Small amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeutics. Pharm Res. 2015;32(4):1383–94.

    Article  CAS  PubMed  Google Scholar 

  59. Verthelyi D, Wang V. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One. 2010;5(12):e15252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haile LA, Puig M, Polumuri SK, Ascher J, Verthelyi D. In vivo effect of innate immune response modulating impurities on the skin milieu using a macaque model: impact on product immunogenicity. J Pharm Sci. 2017;106(3):751–60.

    Article  CAS  PubMed  Google Scholar 

  61. Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One. 2015;10(4):e0125078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. El-Manzalawy, Y. and V. Honavar, Recent advances in B-cell epitope prediction methods. Immunome Res, 2010. 6 Suppl 2: p. S2.

  63. Potocnakova L, Bhide M, Pulzova LB. An Introduction to B-cell epitope mapping and in Silico epitope prediction. J Immunol Res. 2016;2016:6760830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339–43.

    Article  CAS  PubMed  Google Scholar 

  65. De Groot AS, McMurry J, Moise L. Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol. 2008;8(5):620–6.

    Article  PubMed  CAS  Google Scholar 

  66. Moise L, Cousens L, Fueyo J, de Groot AS. Harnessing the power of genomics and immunoinformatics to produce improved vaccines. Expert Opin Drug Discovery. 2011;6(1):9–15.

    Article  CAS  Google Scholar 

  67. Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding Predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008;4(4):e1000048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Groot, A.S.D., et al., In silico prediction of HLA-DP and -DQ epitope content is poorly correlated with clinical immunogenicity of therapeutic proteins, manuscript in preparation, in National Biotechnology Conference. 2013, American Association of Pharmaceutical Scientists: San Diego, CA.

  70. Quarmby V, Phung QT, Lill JR. MAPPs for the identification of immunogenic hotspots of biotherapeutics; an overview of the technology and its application to the biopharmaceutical arena. Expert Rev Proteomics. 2018;15(9):733–48.

    Article  CAS  PubMed  Google Scholar 

  71. Purcell AW, Croft NP, Tscharke DC. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology! Curr Opin Immunol. 2016;40:88–95.

    Article  CAS  PubMed  Google Scholar 

  72. Karle A, Spindeldreher S, Kolbinger F. Secukinumab, a novel anti-IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity. MAbs. 2016;8(3):536–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bartholdy C, Reedtz-Runge SL, Wang J, Hjerrild Zeuthen L, Gruhler A, Gudme CN, et al. In silico and in vitro immunogenicity assessment of B-domain-modified recombinant factor VIII molecules. Haemophilia. 2018;24(5):e354–62.

    Article  CAS  PubMed  Google Scholar 

  74. Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of major histocompatibility complex (MHC) Immunopeptidomes using mass spectrometry. Mol Cell Proteomics. 2015;14(12):3105–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones TD, Phillips WJ, Smith BJ, Bamford CA, Nayee PD, Baglin TP, et al. Identification and removal of a promiscuous CD4+ T cell epitope from the C1 domain of factor VIII. J Thromb Haemost. 2005;3(5):991–1000.

    Article  CAS  PubMed  Google Scholar 

  76. Nayak S, Sivakumar R, Cao O, Daniell H, Byrne BJ, Herzog RW. Mapping the T helper cell response to acid alpha-glucosidase in Pompe mice. Mol Genet Metab. 2012;106(2):189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mazor R, Vassall AN, Eberle JA, Beers R, Weldon JE, Venzon DJ, et al. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin a. Proc Natl Acad Sci U S A. 2012;109(51):E3597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jones TD, et al. A deimmunised form of the ribotoxin, alpha-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead. Protein Eng Des Sel. 2016.

  79. Alvarez B, Barra C, Nielsen M, Andreatta M. Computational tools for the identification and interpretation of sequence motifs in Immunopeptidomes. Proteomics. 2018;18(12):e1700252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Tangri S, et al. Rationally engineered therapeutic proteins with reduced immunogenicity. J Immunol. 2005;174(6):3187–96.

    Article  CAS  PubMed  Google Scholar 

  81. McMurry J, et al. Analyzing mycobacterium tuberculosis proteomes for candidate vaccine epitopes. Tuberculosis (Edinb). 2005;85(1–2):95–105.

    Article  CAS  Google Scholar 

  82. Weaver JM, et al. Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design. J Immunol. 2008;181(5):3039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blaha DT, Anderson SD, Yoakum DM, Hager MV, Zha Y, Gajewski TF, et al. High-throughput stability screening of Neoantigen/HLA complexes improves immunogenicity Predictions. Cancer Immunol Res. 2019;7(1):50–61.

    Article  PubMed  Google Scholar 

  84. Castelli FA, Leleu M, Pouvelle-Moratille S, Farci S, Zarour HM, Andrieu M, et al. Differential capacity of T cell priming in naive donors of promiscuous CD4+ T cell epitopes of HCV NS3 and Core proteins. Eur J Immunol. 2007;37(6):1513–23.

    Article  CAS  PubMed  Google Scholar 

  85. Mazor R, Tai CH, Lee B, Pastan I. Poor correlation between T-cell activation assays and HLA-DR binding prediction algorithms in an immunogenic fragment of Pseudomonas exotoxin a. J Immunol Methods. 2015;425:10–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klein L, Robey EA, Hsieh CS. Central CD4(+) T cell tolerance: deletion versus regulatory T cell differentiation. Nat Rev Immunol. 2019;19(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  87. Brinks V, Jiskoot W, Schellekens H. Immunogenicity of therapeutic proteins: the use of animal models. Pharm Res. 2011;28(10):2379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jiskoot W, et al. Mouse models for assessing protein immunogenicity: lessons and challenges. J Pharm Sci. 2016;105(5):1567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ogishi M, Yotsuyanagi H. Quantitative prediction of the landscape of T cell epitope immunogenicity in sequence space. Front Immunol. 2019;10:827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schultz HS, Reedtz-Runge SL, Bäckström BT, Lamberth K, Pedersen CR, Kvarnhammar AM, et al. Quantitative analysis of the CD4+ T cell response to therapeutic antibodies in healthy donors using a novel T cell:PBMC assay. PLoS One. 2017;12(5):e0178544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Reich K, Blauvelt A, Armstrong A, Langley RG, Fox T, Huang J, et al. Secukinumab, a fully human anti-interleukin-17A monoclonal antibody, exhibits minimal immunogenicity in patients with moderate-to-severe plaque psoriasis. Br J Dermatol. 2017;176(3):752–8.

    Article  CAS  PubMed  Google Scholar 

  92. Spindeldreher S, Maillère B, Correia E, Tenon M, Karle A, Jarvis P, et al. Secukinumab demonstrates significantly lower immunogenicity potential compared to Ixekizumab. Dermatol Ther (Heidelb). 2018;8(1):57–68.

    Article  Google Scholar 

  93. Wullner D, Zhou L, Bramhall E, Kuck A, Goletz TJ, Swanson S, et al. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clin Immunol. 2010;137(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  94. Lawlor DA, Ward FE, Ennis PD, Jackson AP, Parham P. HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature. 1988;335(6187):268–71.

    Article  CAS  PubMed  Google Scholar 

  95. Hughes AL, Hughes MK. Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics. 1995;42(4):233–43.

    Article  CAS  PubMed  Google Scholar 

  96. Hedrick PW. Evolutionary genetics of the major histocompatibility complex. Am Nat. 1994;143(6):945–64.

    Article  Google Scholar 

  97. Tsai S, Santamaria P. MHC class II polymorphisms, autoreactive T-cells, and autoimmunity. Front Immunol. 2013;4:321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S, et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet. 2015;47(9):1085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dieli-Crimi R, Cenit MC, Nunez C. The genetics of celiac disease: a comprehensive review of clinical implications. J Autoimmun. 2015;64:26–41.

    Article  CAS  PubMed  Google Scholar 

  100. Elfaki ME, Khalil EA, de Groot AS, Musa AM, Gutierrez A, Younis BM, et al. Immunogenicity and immune modulatory effects of in silico predicted L. donovani candidate peptide vaccines. Hum Vaccin Immunother. 2012;8(12):1769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kagina BM, Mansoor N, Kpamegan EP, Penn-Nicholson A, Nemes E, Smit E, et al. Qualification of a whole blood intracellular cytokine staining assay to measure mycobacteria-specific CD4 and CD8 T cell immunity by flow cytometry. J Immunol Methods. 2015;417:22–33.

    Article  CAS  PubMed  Google Scholar 

  102. Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, de Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55.

    Article  CAS  PubMed  Google Scholar 

  103. Azam A, et al. Healthy donors exhibit a CD4 T cell repertoire specific to the immunogenic human hormone H2-Relaxin before injection. J Immunol. 2019.

  104. Delluc S, Ravot G, Maillere B. Quantitative analysis of the CD4 T-cell repertoire specific to therapeutic antibodies in healthy donors. FASEB J. 2011;25(6):2040–8.

    Article  CAS  PubMed  Google Scholar 

  105. Delluc S, Ravot G, Maillere B. Quantification of the preexisting CD4 T-cell repertoire specific for human erythropoietin reveals its immunogenicity potential. Blood. 2010;116(22):4542–5.

    Article  CAS  PubMed  Google Scholar 

  106. Higbee RG, et al. An immunologic model for rapid vaccine assessment -- a clinical trial in a test tube. Altern Lab Anim. 2009;37(Suppl 1):19–27.

    Article  CAS  PubMed  Google Scholar 

  107. Dhir V, Fort M, Mahmood A, Higbee R, Warren W, Narayanan P, et al. A predictive biomimetic model of cytokine release induced by TGN1412 and other therapeutic monoclonal antibodies. J Immunotoxicol. 2012;9(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  108. Dauner A, Agrawal P, Salvatico J, Tapia T, Dhir V, Shaik SF, et al. The in vitro MIMIC(R) platform reflects age-associated changes in immunological responses after influenza vaccination. Vaccine. 2017;35(41):5487–94.

  109. Kraus T, et al. Evaluation of a 3D human artificial lymph node as test model for the assessment of immunogenicity of protein aggregates. J Pharm Sci. 2019.

  110. Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665–73.

    Article  CAS  PubMed  Google Scholar 

  111. Giese C, Marx U. Human immunity in vitro - solving immunogenicity and more. Adv Drug Deliv Rev. 2014;69-70:103–22.

    Article  CAS  PubMed  Google Scholar 

  112. Shanti, A., J. Teo, and C. Stefanini, In Vitro Immune Organs-on-Chip for Drug Development: A Review. Pharmaceutics, 2018. 10(4).

  113. Groell F, Jordan O, Borchard G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur J Pharm Biopharm. 2018;130:128–42.

    Article  CAS  PubMed  Google Scholar 

  114. Mitra B, Jindal R, Lee S, Xu Dong D, Li L, Sharma N, et al. Microdevice integrating innate and adaptive immune responses associated with antigen presentation by dendritic cells. RSC Adv. 2013;3(36):16002–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baldwin HM, Ito-Ihara T, Isaacs JD, Hilkens CM. Tumour necrosis factor alpha blockade impairs dendritic cell survival and function in rheumatoid arthritis. Ann Rheum Dis. 2010;69(6):1200–7.

    Article  CAS  PubMed  Google Scholar 

  116. de Andres C, et al. Long-term decrease in VLA-4 expression and functional impairment of dendritic cells during natalizumab therapy in patients with multiple sclerosis. PLoS One. 2012;7(4):e34103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Dahlén R, Strid H, Lundgren A, Isaksson S, Raghavan S, Magnusson MK, et al. Infliximab inhibits activation and effector functions of peripheral blood T cells in vitro from patients with clinically active ulcerative colitis. Scand J Immunol. 2013;78(3):275–84.

    Article  PubMed  CAS  Google Scholar 

  118. Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2002;2(4):251–62.

    Article  CAS  PubMed  Google Scholar 

  119. Jenkins MK, Chu HH, McLachlan J, Moon JJ. On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Annu Rev Immunol. 2010;28:275–94.

    Article  CAS  PubMed  Google Scholar 

  120. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human αβ T cell receptor diversity. Science. 1999;286(5441):958–61.

    Article  CAS  PubMed  Google Scholar 

  121. Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R, et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 2011;21(5):790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol. 2012;32(4):349–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zarnitsyna VI, et al. Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire. Front Immunol. 2013;4:485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Stickler M, et al. An in vitro human cell-based assay to rank the relative immunogenicity of proteins. Toxicol Sci. 2004;77(2):280–9.

    Article  CAS  PubMed  Google Scholar 

  125. Jaber A, Baker M. Assessment of the immunogenicity of different interferon beta-1a formulations using ex vivo T-cell assays. J Pharm Biomed Anal. 2007;43(4):1256–61.

    Article  CAS  PubMed  Google Scholar 

  126. Holgate RG, Weldon R, Jones TD, Baker MP. Characterisation of a novel anti-CD52 antibody with improved efficacy and reduced immunogenicity. PLoS One. 2015;10(9):e0138123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rombach-Riegraf V, Karle AC, Wolf B, Sordé L, Koepke S, Gottlieb S, et al. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One. 2014;9(1):e86322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Telikepalli S, Shinogle HE, Thapa PS, Kim JH, Deshpande M, Jawa V, et al. Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting. J Pharm Sci. 2015;104(5):1575–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Joubert MK, Deshpande M, Yang J, Reynolds H, Bryson C, Fogg M, et al. Use of in vitro assays to assess immunogenicity risk of antibody-based biotherapeutics. PLoS One. 2016;11(8):e0159328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibani Mitra-Kaushik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duke, B.R., Mitra-Kaushik, S. Current In Vitro Assays for Prediction of T Cell Mediated Immunogenicity of Biotherapeutics and Manufacturing Impurities. J Pharm Innov 15, 202–218 (2020). https://doi.org/10.1007/s12247-019-09412-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-019-09412-5

Keywords

Navigation