Skip to main content
Log in

Application and Evaluation of a Two-Wavelength Scintillometry System for Operation in a Complex Shallow Boreal-Forested Valley

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Two-wavelength scintillometer systems can provide much needed measurements of area-averaged sensible and latent heat fluxes. However, these devices rarely have been deployed on canopy-covered complex terrain, and never in the circumpolar boreal biome, where large-scale fluxes are essential to hydroclimate modellers. We present a comparison of fluxes measured above a boreal-forested valley with a two-wavelength scintillometer and an eddy covariance system. Instruments were deployed in late summer 2017, and 19 days of data were retained for the analysis. The scintillometer path was 1347-m long and projected across the valley between 5 and 100 m above the ground, with an effective height of \(\approx \)88 m. The limitations of deriving surface fluxes using scintillometry in complex terrain are discussed, and the effects of atmospheric conditions on the flux comparison are quantified. Fluxes are calculated with the scintillometer only, and using a number of atmospheric variables from the eddy-covariance system; impacts of these calculation methods on the correlation between instrumental systems are assessed. Despite a weak agreement of structure parameters between instruments, the comparison of scintillometer and eddy-covariance fluxes yields good correlation (\(R^2\) up to 0.82). Scintillometry correlates best with eddy-covariance data when the atmospheric surface-layer top is above the scintillometer effective height, but \(R^2\) only drops slightly otherwise (average decrease of 0.11). The validity of scintillometer fluxes appears dubious during night-time and stable periods. We show that area-averaged flux measurements using two-wavelength scintillometers are possible in hilly forests, but more studies are needed to pinpoint the best methodological framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Source: Ministère Forêts, Faune et Parcs du Québec)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-applications. J Irrig Drain Eng 133(4):395–406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)

    Article  Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. J Irrig Drain Eng 133(4):380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)

    Article  Google Scholar 

  • Andreas E (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Ocean Tech 6(2):280–292

    Article  Google Scholar 

  • Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO\(_2\) advection in a sloping forest. Boundary-Layer Meteorol 108(3):397–417

    Article  Google Scholar 

  • Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer, Heidelberg

    Book  Google Scholar 

  • Beyrich F, De Bruin H, Meijninger W, Schipper J, Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105(1):85–97

    Article  Google Scholar 

  • Bosveld F, van der Vliet J, Monna W (1999) The KNMI Garderen experiment: micro-meteorological observations 1988–1989. KNMI, The Netherlands, Tech rep

  • Braam M, Bosveld FC, Moene AF (2012) On Monin-Obukhov scaling in and above the atmospheric surface layer: the complexities of elevated scintillometer measurements. Boundary-Layer Meteorol 144(2):157–177. https://doi.org/10.1007/s10546-012-9716-7

    Article  Google Scholar 

  • Brandt J, Flannigan M, Maynard D, Thompson I, Volney W (2013) An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ Rev 21(4):207–226. https://doi.org/10.1139/er-2013-0040

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. Reidel, Dordrecht

    Book  Google Scholar 

  • Cheng Y, Parlange MB, Brutsaert W (2005) Pathology of Monin-Obukhov similarity in the stable boundary layer. J Geophys Res Atmos 110(D6). https://doi.org/10.1029/2004JD004923

    Article  Google Scholar 

  • Crawford B, Grimmond CSB, Ward HC, Morrison W, Kotthaus S (2017) Spatial and temporal patterns of surface-atmosphere energy exchange in a dense urban environment using scintillometry. Q J R Meteorol Soc 143(703):817–833. https://doi.org/10.1002/qj.2967

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer dP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Evans JG (2009) Long-path scintillometry over complex terrain to determine areal-averaged sensible and latent heat fluxes. PhD thesis, United Kingdom

  • Evans JG, DeBruin HAR (2011) The effective height of a two-wavelength scintillometer system. Boundary-Layer Meteorol 141(1):165–177

    Article  Google Scholar 

  • Evans JG, McNeil DD, Finch JW, Murray T, Harding RJ, Ward HC, Verhoef A (2012) Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agric For Meteorol 166–167:221–233

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A (2009) The use of scintillometry for validating aggregation schemes over heterogeneous grids. Agric For Meteorol 149(12):2098–2109. https://doi.org/10.1016/j.agrformet.2009.09.004

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A, Er-Raki S, Hanich L (2009a) Combining a large aperture scintillometer and estimates of available energy to derive evapotranspiration over several agricultural fields in a semi-arid region. Plant Biosyst 1:209–221. https://doi.org/10.1080/11263500802710036

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A, Hoedjes J, Ramier D, Boulain N, Boubkraoui S, Cappelaere B, Descroix L, Mougenot B, Timouk F (2009b) Combining scintillometer measurements and an aggregation scheme to estimate area-averaged latent heat flux during the AMMA experiment. J Hydrol 375(1–2):217–226. https://doi.org/10.1016/j.jhydrol.2009.01.010

    Article  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69(1–3):57–68. https://doi.org/10.1007/BF00038687

    Article  Google Scholar 

  • Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res 106(D4):3503–3509. https://doi.org/10.1029/2000JD900731

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367. https://doi.org/10.1890/06-0922.1

    Article  Google Scholar 

  • Gauthier S, Bernier P, Kuuluvainen T, Shvidenko A, Schepaschenko D (2015) Boreal forest health and global change. Science 349(6250):819–822. https://doi.org/10.1126/science.aaa9092

    Article  Google Scholar 

  • Geissbühler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Boundary-Layer Meteorol 96(3):371–392. https://doi.org/10.1023/A:1002660521017

    Article  Google Scholar 

  • Geli HM, Neale CM, Watts D, Osterberg J, De Bruin HA, Kohsiek W, Pack RT, Hipps LE (2012) Scintillometer-based estimates of sensible heat flux using lidar-derived surface roughness. J Hydrometeorol 13(4):1317–1331. https://doi.org/10.1175/JHM-D-11-085.1

    Article  Google Scholar 

  • Goulden M, Anderson R, Bales R, Kelly A, Meadows M, Winston G (2012) Evapotranspiration along an elevation gradient in California’s Sierra Nevada. J Geophys Res Biogeosci 117(G3), https://doi.org/10.1029/2012JG002027

    Article  Google Scholar 

  • Guyot A, Cohard JM, Anquetin S, Galle S (2012) Long-term observations of turbulent fluxes over heterogeneous vegetation using scintillometry and additional observations: a contribution to AMMA under Sudano-Sahelian climate. Agric For Meteorol 154:84–98. https://doi.org/10.1016/j.agrformet.2011.10.008

    Article  Google Scholar 

  • Hammerle A, Haslwanter A, Schmitt M, Bahn M, Tappeiner U, Cernusca A, Wohlfahrt G (2007) Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-Layer Meteorol 122(2):397–416. https://doi.org/10.1007/s10546-006-9109-x

    Article  Google Scholar 

  • Hartogensis O, Watts C, Rodriguez J, De Bruin H (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometeorol 4(5):915–928. https://doi.org/10.1175/1525-7541(2003)004\(<\)0915:DOAEHF\(>\)2.0.CO;2

  • Hill RJ, Bohlander RA, Clifford SF, McMillan RW, Priestly J, Schoenfeld W (1988) Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements. IEEE Trans Geosci Remote Sens 26(3):330–342. https://doi.org/10.1109/36.3035

    Article  Google Scholar 

  • Hiller R, Zeeman MJ, Eugster W (2008) Eddy-covariance flux measurements in the complex terrain of an alpine valley in Switzerland. Boundary-Layer Meteorol 127(3):449–467. https://doi.org/10.1007/s10546-008-9267-0

    Article  Google Scholar 

  • Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49(5):275–284. https://doi.org/10.1007/s00484-004-0251-1

    Article  Google Scholar 

  • Isabelle PE, Nadeau DF, Asselin MH, Harvey R, Musselman KN, Rousseau AN, Anctil F (2018) Solar radiation transmittance of a boreal balsam fir canopy: spatiotemporal variability and impacts on growing season hydrology. Agric For Meteorol 263:1–14. https://doi.org/10.1016/j.agrformet.2018.07.022

    Article  Google Scholar 

  • Jacobs C, Elbers J, Brolsma R, Hartogensis O, Moors E, Márquez MTRC, van Hove B (2015) Assessment of evaporative water loss from Dutch cities. Build Environ 83:27–38. https://doi.org/10.1016/j.buildenv.2014.07.005

    Article  Google Scholar 

  • Kleissl J, Hong SH, Hendrickx JM (2009) New Mexico scintillometer network: supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90(2):207–218. https://doi.org/10.1175/2008BAMS2480.1

    Article  Google Scholar 

  • Kleissl J, Hartogensis O, Gomez J (2010) Test of scintillometer saturation correction methods using field experimental data. Boundary-Layer Meteorol 137(3):493–507. https://doi.org/10.1007/s10546-010-9540-x

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid HP (2015) A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci Model Dev 8(11):3695–3713. https://doi.org/10.5194/gmd-8-3695-2015

    Article  Google Scholar 

  • Kooijmans LM, Hartogensis OK (2016) Surface-layer similarity functions for dissipation rate and structure parameters of temperature and humidity based on eleven field experiments. Boundary-Layer Meteorol 160(3):501–527. https://doi.org/10.1007/s10546-016-0152-y

    Article  Google Scholar 

  • Landsberg JJ, Gower ST (1997) Applications of physiological ecology to forest management. Academic Press, New York

    Google Scholar 

  • Lavigne MP (2007) Modélisation du régime hydrologique et de l’impact des coupes forestières sur l’écoulement du ruisseau des Eaux-Volées à l’aide d’HYDROTEL. Master’s thesis, Institut national de la recherche scientifique - Centre Eau Terre Environnement

  • Li X, Gao Z, Li Y, Tong B (2017) Comparison of sensible heat fluxes measured by a large aperture scintillometer and eddy covariance system over a heterogeneous farmland in East China. Atmosphere 8(6):101. https://doi.org/10.3390/atmos8060101

    Article  Google Scholar 

  • Lüdi A, Beyrich F, Mätzler C (2005) Determination of the turbulent temperature-humidity correlation from scintillometric measurements. Boundary-Layer Meteorol 117(3):525–550

    Article  Google Scholar 

  • Matzinger N, Andretta M, Van Gorsel E, Vogt R, Ohmura A, Rotach M (2003) Surface radiation budget in an alpine valley. Q J R Meteorol Soc 129(588):877–895. https://doi.org/10.1256/qj.02.44

    Article  Google Scholar 

  • Mauder M, Foken T (2011) Documentation and instruction manual of the eddy-covariance software package TK3. Universität Bayreuth, Tech rep

  • Meijninger W, Green A, Hartogensis O, Kohsiek W, Hoedjes J, Zuurbier R, De Bruin H (2002a) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105(1):63–83

    Article  Google Scholar 

  • Meijninger W, Hartogensis O, Kohsiek W, Hoedjes J, Zuurbier R, De Bruin H (2002b) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105(1):37–62

    Article  Google Scholar 

  • Meijninger W, Beyrich F, Lüdi A, Kohsiek W, Bruin HD (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface-a contribution to LITFASS-2003. Boundary-Layer Meteorol 121(1):89–110

    Article  Google Scholar 

  • Min W, Chen Z, Sun L, Gao W, Luo X, Yang T, Pu J, Huang G, Yang X (2004) A scheme for pixel-scale aerodynamic surface temperature over hilly land. Adv Atmos Sci 21(1):125–131. https://doi.org/10.1007/BF02915686

    Article  Google Scholar 

  • Moene AF, Schüttemeyer D (2008) The effect of surface heterogeneity on the temperature-humidity correlation and the relative transport efficiency. Boundary-Layer Meteorol 129(1):99–113. https://doi.org/10.1007/s10546-008-9312-z

    Article  Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. Springer, Dordrecht, pp 7–31

    Google Scholar 

  • Moncrieff JB, Massheder J, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188:589–611

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol I. MIT Press, Cambridge

    Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW, Parlange MB (2013) Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol 147(3):401–419. https://doi.org/10.1007/s10546-012-9787-5

    Article  Google Scholar 

  • Noël P, Rousseau AN, Paniconi C, Nadeau DF (2014) Algorithm for delineating and extracting hillslopes and hillslope width functions from gridded elevation data. J Hydrol Eng 19(2):366–374. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000783

    Article  Google Scholar 

  • Oldroyd HJ, Pardyjak ER, Huwald H, Parlange MB (2016) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Boundary-Layer Meteorol 159(3):539–565. https://doi.org/10.1007/s10546-015-0066-0

    Article  Google Scholar 

  • Ono K, Mano M, Miyata A, Inoue Y (2008) Applicability of the planar fit technique in estimating surface fluxes over flat terrain using eddy covariance. J Agric Meteorol (Jpn) 64:121–130

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala S, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    Article  Google Scholar 

  • Poggio LP, Furger M, Prévôt AH, Graber WK, Andreas EL (2000) Scintillometer wind measurements over complex terrain. J Atmos Ocean Technol 17(1):17–26. https://doi.org/10.1175/1520-0426(2000)017\(<\)0017:SWMOCT\(>\)2.0.CO;2

  • Rotach MW, Wohlfahrt G, Hansel A, Reif M, Wagner J, Gohm A (2014) The world is not flat: Implications for the global carbon balance. Bull Am Meteorol Soc 95(7):1021–1028. https://doi.org/10.1175/BAMS-D-13-00109.1

    Article  Google Scholar 

  • Rotach MW, Stiperski I, Fuhrer O, Goger B, Gohm A, Obleitner F, Rau G, Sfyri E, Vergeiner J (2017) Investigating exchange processes over complex topography: the Innsbruck Box (i-Box). Bull Am Meteorol Soc 98(4):787–805. https://doi.org/10.1175/BAMS-D-15-00246.1

    Article  Google Scholar 

  • RPG (2014) RPG-MWSC-160: microwave scintillometer operation & software guide, 2nd edn. Radiometer Physics GmbH, Meckenheim

    Google Scholar 

  • Samain B, Ferket BV, Defloor W, Pauwels VR (2011) Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer. Water Resour Res 47(5), https://doi.org/10.1029/2009WR009032

  • Samain B, Defloor W, Pauwels VR (2012) Continuous time series of catchment-averaged sensible heat flux from a large aperture scintillometer: efficient estimation of stability conditions and importance of fluxes under stable conditions. J Hydrometeorol 13(2):423–442. https://doi.org/10.1175/JHM-D-11-030.1

    Article  Google Scholar 

  • Sfyri E, Rotach MW, Stiperski I, Bosveld FC, Lehner M, Obleitner F (2018) Scalar-flux similarity in the layer near the surface over mountainous terrain. Boundary-Layer Meteorol 169(1):1–36. https://doi.org/10.1007/s10546-018-0365-3

    Article  Google Scholar 

  • Skartveit A, Olseth JA, Tuft ME (1998) An hourly diffuse fraction model with correction for variability and surface albedo. Sol Energy 63(3):173–183. https://doi.org/10.1016/S0038-092X(98)00067-X

    Article  Google Scholar 

  • Sokal R, Michener C (1967) The effects of different numerical technique on the phenetic classification of bees of the hoplitis complex (Megachilidae). Proc Linn Soc London 178(1):59–74. https://doi.org/10.1111/j.1095-8312.1967.tb00963.x

    Article  Google Scholar 

  • Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Boundary-Layer Meteorol 159(1):97–121. https://doi.org/10.1007/s10546-015-0103-z

    Article  Google Scholar 

  • Stiperski I, Calaf M, Rotach MW (2019) Scaling, anisotropy and complexity in near-surface atmospheric turbulence. J Geophys Res Atmos 124(3):1428. https://doi.org/10.1029/2018JD029383

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, Berlin

    Book  Google Scholar 

  • Tremblay Y, Rousseau AN, Plamondon AP, Levesque D, Jutras S (2008) Rainfall peak flow response to clearcutting 50% of three small watersheds in a boreal forest, Montmorency Forest, Quebec. J Hydrol 352(1–2):67–76

    Article  Google Scholar 

  • Tremblay Y, Rousseau AN, Plamondon AP, Lévesque D, Prévost M (2009) Changes in stream water quality due to logging of the boreal forest in the Montmorency Forest, Quebec. Hydrol Process 23(5):764–776. https://doi.org/10.1002/hyp.7175

    Article  Google Scholar 

  • Turnipseed A, Blanken P, Anderson D, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex topography. Agric For Meteorol 110(3):177–201. https://doi.org/10.1016/S0168-1923(01)00290-8

    Article  Google Scholar 

  • Van Kesteren B, Hartogensis OK, van Dinther D, Moene AF, DeBruin HAR (2013) Measuring \(\text{ H }_2\text{ O }\) and \(\text{ CO }_2\) fluxes at field scales with scintillometry: part I - introduction and validation of four methods. Agric For Meteorol 178–179:75–87

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14(3):512–526

    Article  Google Scholar 

  • Ward H, Evans J, Hartogensis O, Moene A, De Bruin H, Grimmond C (2013) A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q J R Meteorol Soc 139(676):1912–1922. https://doi.org/10.1002/qj.2076

    Article  Google Scholar 

  • Ward H, Evans JG, Grimmond CSB (2014) Multi-scale sensible heat fluxes in the suburban environment from large-aperture scintillometry and eddy covariance. Boundary-Layer Meteorol 152(1):65–89. https://doi.org/10.1007/s10546-014-9916-4

    Article  Google Scholar 

  • Ward H, Evans JG, Grimmond CSB (2015a) Infrared and millimetre-wave scintillometry in the suburban environment - part 2: large-area sensible and latent heat fluxes. Atmos Meas Tech 8(3):1407–1424. https://doi.org/10.5194/amt-8-1407-2015

    Article  Google Scholar 

  • Ward HC (2017) Scintillometry in urban and complex environments: a review. Meas Sci Technol 28(6):064,005. https://doi.org/10.1088/1361-6501/aa5e85

    Article  Google Scholar 

  • Ward HC, Evans JG, Grimmond CSB, Bradford J (2015b) Infrared and millimetre-wave scintillometry in the suburban environment - part 1: structure parameters. Atmos Meas Tech 8(3):1385–1405. https://doi.org/10.5194/amt-8-1385-2015

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Whiteman CD, Allwine KJ (1986) Extraterrestrial solar radiation on inclined surfaces. Environ Soft 1(3):164–169

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150. https://doi.org/10.1023/A:1018966204465

    Article  Google Scholar 

  • Wyngaard J, Izumi Y, Collins SA (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61(12):1646–1650. https://doi.org/10.1364/JOSA.61.001646

    Article  Google Scholar 

  • Yee MS, Pauwels VR, Daly E, Beringer J, Rüdiger C, McCabe MF, Walker JP (2015) A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes. Agric For Meteorol 213:226–239. https://doi.org/10.1016/j.agrformet.2015.07.004

    Article  Google Scholar 

  • Zeweldi DA, Gebremichael M, Wang J, Sammis T, Kleissl J, Miller D (2010) Intercomparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: field experiment over a homogeneous semi-arid region. Boundary-Layer Meteorol 135(1):151–159. https://doi.org/10.1007/s10546-009-9460-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all Montmorency Forest staff, especially Patrick Pineault and Charles Villeneuve, for their extremely valuable help in the field. We also would like to thank Annie-Claude Parent, Dany Crépault, Denis Jobin, Gonzalo Leonardini, Bram Hadiwijaya, Achut Parajuli, Laurie Migneault, Carine Poncelet, Antoine Thiboult, Guillaume Frédéric Hazemann, Jonas Götte, and Julie-Anne Pelletier-Bergeron for their help installing and maintaining the scintillometer towers. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Ouranos Consortium, Hydro-Québec, Environment and Climate Change Canada, and Ministère de l’Environnement et de la Lutte contre les Changements climatiques (MELCC), through NSERC project RDCPJ-477125-14, by the Canadian Foundation for Innovation - John R. Evans Leaders Fund #33869, and by the the Fonds de recherche du Québec - Nature et Technologies (FRQNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Nadeau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isabelle, PE., Nadeau, D.F., Perelet, A.O. et al. Application and Evaluation of a Two-Wavelength Scintillometry System for Operation in a Complex Shallow Boreal-Forested Valley. Boundary-Layer Meteorol 174, 341–370 (2020). https://doi.org/10.1007/s10546-019-00488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-019-00488-7

Keywords

Navigation