Skip to main content

Advertisement

Log in

Effects of physical exercise on the prevention of stem cells senescence

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Regular physical activity is essential for maintaining wellbeing; physical inactivity, on the contrary, is considered by the World Health Organization (WHO) as one of the most important risk factors for global mortality. During physical exercise different growth factors, cytokines and hormones are released, which affect positively the functions of heart, bone, brain and skeletal muscle. It has been reported that physical activity is able to stimulate tissue remodeling. Therefore, in this scenario, it is important to deepen the topic of physical activity-induced effects on stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yang, T. T., Lo, C. P., Tsai, P. S., Wu, S. Y., Wang, T. F., Chen, Y. W., Jiang-Shieh, Y. F., & Kuo, Y. M. (2015). Aging and exercise affect hippocampal neurogenesis via different mechanisms. PLoS One, 10(7), e0132152.

    PubMed  PubMed Central  Google Scholar 

  2. Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A. L., et al. (2016). Autophagy maintains stemness by preventing senescence. Nature, 529(7584), 37–42.

    CAS  PubMed  Google Scholar 

  3. Park, C. B., & Larsson, N. G. (2011). Mitochondrial DNA mutations in disease and aging. The Journal of Cell Biology, 193(5), 809–818.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., Ohmura, M., Naka, K., Hosokawa, K., Ikeda, Y., et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Medicine, 12(4), 446–451.

    CAS  PubMed  Google Scholar 

  5. Ermolaeva, M., Neri, F., Ori, A., & Rudolph, K. L. (2018). Cellular and epigenetic drivers of stem cell ageing. Nature Reviews. Molecular Cell Biology, 19(9), 594–610.

    CAS  PubMed  Google Scholar 

  6. Behrens, A., van Deursen, J. M., Rudolph, K. L., & Schumacher, B. (2014). Impact of genomic damage and ageing on stem cell function. Nature Cell Biology, 16(3), 201–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohrin, M., Bourke, E., Alexander, D., Warr, M. R., Barry-Holson, K., Le Beau, M. M., Morrison, C. G., & Passegue, E. (2010). Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell, 7(2), 174–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sotiropoulou, P. A., Candi, A., Mascre, G., De Clercq, S., Youssef, K. K., Lapouge, G., Dahl, E., Semeraro, C., Denecker, G., Marine, J. C., et al. (2010). Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology, 12(6), 572–582.

    CAS  PubMed  Google Scholar 

  9. Ho, T. T., Warr, M. R., Adelman, E. R., Lansinger, O. M., Flach, J., Verovskaya, E. V., Figueroa, M. E., & Passegue, E. (2017). Autophagy maintains the metabolism and function of young and old stem cells. Nature, 543(7644), 205–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(Suppl 1), S4–S9.

    PubMed  Google Scholar 

  11. Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., Loukov, D., Schenck, L. P., Jury, J., Foley, K. P., et al. (2017). Age-associated microbial Dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe, 21(4), 455–466 e454.

    CAS  Google Scholar 

  12. Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L., & Rossi, D. J. (2014). Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell, 15(1), 37–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Flach, J., Bakker, S. T., Mohrin, M., Conroy, P. C., Pietras, E. M., Reynaud, D., Alvarez, S., Diolaiti, M. E., Ugarte, F., Forsberg, E. C., et al. (2014). Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature, 512(7513), 198–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kornicka, K., Marycz, K., Maredziak, M., Tomaszewski, K. A., & Nicpon, J. (2017). The effects of the DNA methyltranfserases inhibitor 5-Azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells. Journal of Cellular and Molecular Medicine, 21(2), 387–401.

    CAS  PubMed  Google Scholar 

  15. Maredziak, M., Marycz, K., Tomaszewski, K. A., Kornicka, K., & Henry, B. M. (2016). The influence of aging on the regenerative potential of human adipose derived Mesenchymal stem cells. Stem Cells International, 2016, 2152435.

    PubMed  PubMed Central  Google Scholar 

  16. de Oliveira, C., Marmot, M. G., Demakakos, P., Vaz de Melo Mambrini, J., Peixoto, S. V., & Lima-Costa, M. F. (2016). Mortality risk attributable to smoking, hypertension and diabetes among English and Brazilian older adults (The ELSA and Bambui cohort ageing studies). European Journal of Public Health, 26(5), 831–835.

    PubMed  Google Scholar 

  17. Grazioli, E., Dimauro, I., Mercatelli, N., Wang, G., Pitsiladis, Y., Di Luigi, L., & Caporossi, D. (2017). Physical activity in the prevention of human diseases: Role of epigenetic modifications. BMC Genomics, 18(Suppl 8), 802.

    PubMed  PubMed Central  Google Scholar 

  18. Maiorana, A. J., Williams, A. D., Askew, C. D., Levinger, I., Coombes, J., Vicenzino, B., Davison, K., Smart, N. A., & Selig, S. E. (2018). Exercise professionals with advanced clinical training should be afforded greater responsibility in pre-participation exercise screening: A new collaborative model between exercise professionals and physicians. Sports Medicine, 48(6), 1293–1302.

    PubMed  Google Scholar 

  19. Ratter, J., Radlinger, L., & Lucas, C. (2014). Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: A systematic review. Journal of Physiotherapy, 60(3), 144–150.

    PubMed  Google Scholar 

  20. Miller, W. C., Wallace, J. P., & Eggert, K. E. (1993). Predicting max HR and the HR-VO2 relationship for exercise prescription in obesity. Medicine and Science in Sports and Exercise, 25(9), 1077–1081.

    CAS  PubMed  Google Scholar 

  21. Zhu, N., Suarez-Lopez, J. R., Sidney, S., Sternfeld, B., Schreiner, P. J., Carnethon, M. R., Lewis, C. E., Crow, R. S., Bouchard, C., Haskell, W. L., et al. (2010). Longitudinal examination of age-predicted symptom-limited exercise maximum HR. Medicine and Science in Sports and Exercise, 42(8), 1519–1527.

    PubMed  PubMed Central  Google Scholar 

  22. Hoeger, W. Lifetime physical fitness and wellness 2007.

  23. Wen, C. P., Wai, J. P., Tsai, M. K., Yang, Y. C., Cheng, T. Y., Lee, M. C., Chan, H. T., Tsao, C. K., Tsai, S. P., & Wu, X. (2011). Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet, 378(9798), 1244–1253.

    PubMed  Google Scholar 

  24. De Lisio, M., & Parise, G. (2012). Characterization of the effects of exercise training on hematopoietic stem cell quantity and function. Journal of Applied Physiology (1985), 113(10), 1576–1584.

    Google Scholar 

  25. Volaklis, K. A., Tokmakidis, S. P., & Halle, M. (2013). Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients. Clinical Research in Cardiology, 102(4), 249–257.

    PubMed  Google Scholar 

  26. Marycz, K., Mierzejewska, K., Smieszek, A., Suszynska, E., Malicka, I., Kucia, M., & Ratajczak, M. Z. (2016). Endurance exercise mobilizes developmentally early stem cells into peripheral blood and increases their number in bone marrow: Implications for tissue regeneration. Stem Cells International, 2016, 5756901.

    PubMed  Google Scholar 

  27. Ratajczak, M. Z., Zuba-Surma, E., Kucia, M., Poniewierska, A., Suszynska, M., & Ratajczak, J. (2012). Pluripotent and multipotent stem cells in adult tissues. Advances in Medical Sciences, 57(1), 1–17.

    CAS  PubMed  Google Scholar 

  28. Abazov, V. M., Abbott, B., Acharya, B. S., Adams, M., Adams, T., Alexeev, G. D., Alkhazov, G., Alton, A., Alverson, G., Alves, G. A., et al. (2011). Search for the standard model Higgs boson in the H-->WW-->lnuq’q decay channel. Physical Review Letters, 106(17), 171802.

    CAS  PubMed  Google Scholar 

  29. Timmermans, F., Velghe, I., Vanwalleghem, L., De Smedt, M., Van Coppernolle, S., Taghon, T., Moore, H. D., Leclercq, G., Langerak, A. W., Kerre, T., et al. (2009). Generation of T cells from human embryonic stem cell-derived hematopoietic zones. Journal of Immunology, 182(11), 6879–6888.

    CAS  Google Scholar 

  30. Charge, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84(1), 209–238.

    CAS  PubMed  Google Scholar 

  31. Seib, D. R., & Martin-Villalba, A. (2015). Neurogenesis in the Normal ageing Hippocampus: A mini-review. Gerontology, 61(4), 327–335.

    CAS  PubMed  Google Scholar 

  32. Bonsignore, M. R., Morici, G., Santoro, A., Pagano, M., Cascio, L., Bonanno, A., Abate, P., Mirabella, F., Profita, M., Insalaco, G., et al. (2002). Circulating hematopoietic progenitor cells in runners. Journal of Applied Physiology (1985), 93(5), 1691–1697.

    Google Scholar 

  33. Kropfl, J. M., Stelzer, I., Mangge, H., Pekovits, K., Fuchs, R., Allard, N., Schinagl, L., Hofmann, P., Dohr, G., Wallner-Liebmann, S., et al. (2014). Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity. PLoS One, 9(9), e106120.

    PubMed  PubMed Central  Google Scholar 

  34. Thijssen, D. H., Vos, J. B., Verseyden, C., van Zonneveld, A. J., Smits, P., Sweep, F. C., Hopman, M. T., & de Boer, H. C. (2006). Haematopoietic stem cells and endothelial progenitor cells in healthy men: Effect of aging and training. Aging Cell, 5(6), 495–503.

    CAS  PubMed  Google Scholar 

  35. Wardyn, G. G., Rennard, S. I., Brusnahan, S. K., McGuire, T. R., Carlson, M. L., Smith, L. M., McGranaghan, S., & Sharp, J. G. (2008). Effects of exercise on hematological parameters, circulating side population cells, and cytokines. Experimental Hematology, 36(2), 216–223.

    CAS  PubMed  Google Scholar 

  36. De Lisio, M., Baker, J. M., & Parise, G. (2013). Exercise promotes bone marrow cell survival and recipient reconstitution post-bone marrow transplantation, which is associated with increased survival. Experimental Hematology, 41(2), 143–154.

    PubMed  Google Scholar 

  37. Sarto, P., Balducci, E., Balconi, G., Fiordaliso, F., Merlo, L., Tuzzato, G., Pappagallo, G. L., Frigato, N., Zanocco, A., Forestieri, C., Azzarello, G., Mazzucco, A., Valenti, M. T., Alborino, F., Noventa, D., Vinante, O., Pascotto, P., Sartore, S., Dejana, E., & Latini, R. (2007). Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. Journal of Cardiac Failure, 13(9), 701–708.

    CAS  PubMed  Google Scholar 

  38. Ribeiro, F., Ribeiro, I. P., Alves, A. J., do Ceu Monteiro, M., Oliveira, N. L., Oliveira, J., Amado, F., Remiao, F., & Duarte, J. A. (2013). Effects of exercise training on endothelial progenitor cells in cardiovascular disease: A systematic review. American Journal of Physical Medicine & Rehabilitation, 92(11), 1020–1030.

    Google Scholar 

  39. Xia, W. H., Li, J., Su, C., Yang, Z., Chen, L., Wu, F., Zhang, Y. Y., Yu, B. B., Qiu, Y. X., Wang, S. M., et al. (2012). Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell, 11(1), 111–119.

    CAS  PubMed  Google Scholar 

  40. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., & Finkel, T. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348(7), 593–600.

    PubMed  Google Scholar 

  41. Guhanarayan, G., Jablonski, J., & Witkowski, S. (2014). Circulating angiogenic cell population responses to 10 days of reduced physical activity. Journal of Applied Physiology (1985), 117(5), 500–506.

    CAS  Google Scholar 

  42. Onoyama, S., Qiu, L., Low, H. P., Chang, C. I., Strohsnitter, W. C., Norwitz, E. R., Lopresti, M., Edmiston, K., Lee, I. M., Trichopoulos, D., Lagiou, P., & Hsieh, C. C. (2016). Prenatal maternal physical activity and stem cells in umbilical cord blood. Medicine and Science in Sports and Exercise, 48(1), 82–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen, L., Wang, H., Bei, Y., Cretoiu, D., Cretoiu, S. M., & Xiao, J. (2017). Formation of new Cardiomyocytes in exercise. Advances in Experimental Medicine and Biology, 999, 91–102.

    PubMed  Google Scholar 

  44. Kruger, K., Mooren, F. C., & Pilat, C. (2016). The Immunomodulatory effects of physical activity. Current Pharmaceutical Design, 22(24), 3730–3748.

    PubMed  Google Scholar 

  45. Debevec, T., Millet, G. P., & Pialoux, V. (2017). Hypoxia-induced oxidative stress modulation with physical activity. Frontiers in Physiology, 8, 84.

    PubMed  PubMed Central  Google Scholar 

  46. Dalle Carbonare, L., Manfredi, M., Caviglia, G., Conte, E., Robotti, E., Marengo, E., Cheri, S., Zamboni, F., Gabbiani, D., & Deiana, M. (2018). Can half-marathon affect overall health? The yin-yang of sport. Journal of Proteomics, 170, 80–87.

    CAS  PubMed  Google Scholar 

  47. Koning, J. J., Kooij, G., de Vries, H. E., Nolte, M. A., & Mebius, R. E. (2013). Mesenchymal stem cells are mobilized from the bone marrow during inflammation. Frontiers in Immunology, 4, 49.

    PubMed  PubMed Central  Google Scholar 

  48. Lin, W., Xu, L., Zwingenberger, S., Gibon, E., Goodman, S. B., & Li, G. (2017). Mesenchymal stem cells homing to improve bone healing. Journal of Orthopaedic Translation, 9, 19–27.

    PubMed  PubMed Central  Google Scholar 

  49. Kittler, E. L., McGrath, H., Temeles, D., Crittenden, R. B., Kister, V. K., & Quesenberry, P. J. (1992). Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood, 79(12), 3168–3178.

    CAS  PubMed  Google Scholar 

  50. Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C. T., & Rubin, J. (2011). Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. Journal of Biomechanics, 44(4), 593–599.

    PubMed  Google Scholar 

  51. Nielsen, S., Akerstrom, T., Rinnov, A., Yfanti, C., Scheele, C., Pedersen, B. K., & Laye, M. J. (2014). The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One, 9(2), e87308.

    PubMed  PubMed Central  Google Scholar 

  52. Maria Teresa Valenti, M. D., Cheri, S., Dotta, M., Zamboni, F., Gabbiani, D., Schena, F., Carbonare, L. D., & Mottes, M. (2019). Physical exercise modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p expression in progenitor cells promoting Osteogenesis. Cells.

  53. Benayahu, D., Wiesenfeld, Y., & Sapir-Koren, R. (2019). How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? Journal of Cellular Physiology, 234(8), 12133–12141.

    CAS  PubMed  Google Scholar 

  54. Dalle Carbonare L, Mottes M, Cheri S, Deiana M, Zamboni F, Gabbiani D, Schena F, Salvagno GL, Lippi G, Valenti MT. (2019). Increased Gene Expression of RUNX2 and SOX9 in Mesenchymal Circulating Progenitors Is Associated with Autophagy during Physical Activity. Oxid Med Cell Longev 2019:8426259.

  55. Warden, S. J., Hurst, J. A., Sanders, M. S., Turner, C. H., Burr, D. B., & Li, J. (2005). Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 20(5), 809–816.

    Google Scholar 

  56. Wallace, B. A., & Cumming, R. G. (2000). Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcified Tissue International, 67(1), 10–18.

    CAS  PubMed  Google Scholar 

  57. Duarte, F. O., Gomes-Gatto, C. D. V., Oishi, J. C., Lino, A. D. S., Stotzer, U. S., Rodrigues, M. F. C., Gatti da Silva, G. H., & Selistre-de-Araujo, H. S. (2017). Physical training improves visceral adipose tissue health by remodelling extracellular matrix in rats with estrogen absence: A gene expression analysis. International Journal of Experimental Pathology, 98(4), 203–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sen, B., Xie, Z., Case, N., Ma, M., Rubin, C., & Rubin, J. (2008). Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology, 149(12), 6065–6075.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pagnotti, G. M., Styner, M., Uzer, G., Patel, V. S., Wright, L. E., Ness, K. K., Guise, T. A., Rubin, J., & Rubin, C. T. (2019). Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nature Reviews. Endocrinology, 15(6), 339–355.

    PubMed  PubMed Central  Google Scholar 

  60. Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 9, 493–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bellamy, L. M., Joanisse, S., Grubb, A., Mitchell, C. J., McKay, B. R., Phillips, S. M., Baker, S., & Parise, G. (2014). The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One, 9(10), e109739.

    PubMed  PubMed Central  Google Scholar 

  62. Charifi, N., Kadi, F., Feasson, L., & Denis, C. (2003). Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle & Nerve, 28(1), 87–92.

    Google Scholar 

  63. Kadi, F., Schjerling, P., Andersen, L. L., Charifi, N., Madsen, J. L., Christensen, L. R., & Andersen, J. L. (2004). The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. The Journal of Physiology, 558(Pt 3), 1005–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pedersen, B. K. (2019). Physical activity and muscle-brain crosstalk. Nature Reviews. Endocrinology.

  65. Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94(10), 1062–1069.

    CAS  PubMed  Google Scholar 

  66. Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Jr., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L. M., Barker, R. A., Gage, F. H., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bondolfi, L., Ermini, F., Long, J. M., Ingram, D. K., & Jucker, M. (2004). Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiology of Aging, 25(3), 333–340.

    CAS  PubMed  Google Scholar 

  68. Liu, W., Wu, W., Lin, G., Cheng, J., Zeng, Y., & Shi, Y. (2018). Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. Molecular Medicine Reports, 18(2), 1455–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Leiter, O., Seidemann, S., Overall, R. W., Ramasz, B., Rund, N., Schallenberg, S., Grinenko, T., Wielockx, B., Kempermann, G., & Walker, T. L. (2019). Exercise-induced activated platelets increase adult hippocampal precursor proliferation and promote neuronal differentiation. Stem Cell Reports, 12(4), 667–679.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nam, S. M., Kim, J. W., Yoo, D. Y., Yim, H. S., Kim, D. W., Choi, J. H., Kim, W., Jung, H. Y., Won, M. H., Hwang, I. K., et al. (2014). Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose. BMC Neuroscience, 15, 116.

    PubMed  PubMed Central  Google Scholar 

  71. Jang, Y. C., Sinha, M., Cerletti, M., Dall’Osso, C., & Wagers, A. J. (2011). Skeletal muscle stem cells: Effects of aging and metabolism on muscle regenerative function. Cold Spring Harbor Symposia on Quantitative Biology, 76, 101–111.

    CAS  PubMed  Google Scholar 

  72. Shefer, G., Rauner, G., Stuelsatz, P., Benayahu, D., & Yablonka-Reuveni, Z. (2013). Moderate-intensity treadmill running promotes expansion of the satellite cell pool in young and old mice. The FEBS Journal, 280(17), 4063–4073.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nederveen, J. P., Joanisse, S., Seguin, C. M., Bell, K. E., Baker, S. K., Phillips, S. M., & Parise, G. (2015). The effect of exercise mode on the acute response of satellite cells in old men. Acta Physiologica (Oxford, England), 215(4), 177–190.

    CAS  Google Scholar 

  74. Infante, A., & Rodriguez, C. I. (2018). Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Research & Therapy, 9(1), 244.

    Google Scholar 

  75. Maredziak, M., Smieszek, A., Chrzastek, K., Basinska, K., & Marycz, K. (2015). Physical activity increases the Total number of bone-marrow-derived Mesenchymal stem cells, enhances their Osteogenic potential, and inhibits their Adipogenic properties. Stem Cells International, 2015, 379093.

    PubMed  PubMed Central  Google Scholar 

  76. De Lisio, M., & Parise, G. (2013). Exercise and hematopoietic stem and progenitor cells: Protection, quantity, and function. Exercise and Sport Sciences Reviews, 41(2), 116–122.

    PubMed  Google Scholar 

  77. Thorell, D., Borjesson, M., Larsson, P., Ulfhammer, E., Karlsson, L., & DuttaRoy, S. (2009). Strenuous exercise increases late outgrowth endothelial cells in healthy subjects. European Journal of Applied Physiology, 107(4), 481–488.

    CAS  PubMed  Google Scholar 

  78. Mobius-Winkler, S., Hilberg, T., Menzel, K., Golla, E., Burman, A., Schuler, G., & Adams, V. (2009). Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. Journal of Applied Physiology (1985), 107(6), 1943–1950.

    Google Scholar 

  79. Van Craenenbroeck, E. M., Vrints, C. J., Haine, S. E., Vermeulen, K., Goovaerts, I., Van Tendeloo, V. F., Hoymans, V. Y., & Conraads, V. M. (2008). A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. Journal of Applied Physiology (1985), 104(4), 1006–1013.

    Google Scholar 

  80. Laufs, U., Urhausen, A., Werner, N., Scharhag, J., Heitz, A., Kissner, G., Bohm, M., Kindermann, W., & Nickenig, G. (2005). Running exercise of different duration and intensity: Effect on endothelial progenitor cells in healthy subjects. European Journal of Cardiovascular Prevention and Rehabilitation, 12(4), 407–414.

    PubMed  Google Scholar 

  81. Lippi, G., Buonocore, R., Tarperi, C., Montagnana, M., Festa, L., Danese, E., Benati, M., Salvagno, G. L., Bonaguri, C., Roggenbuck, D., et al. (2016). DNA injury is acutely enhanced in response to increasing bulks of aerobic physical exercise. Clinica Chimica Acta, 460, 146–151.

    CAS  Google Scholar 

  82. Borghini, A., Giardini, G., Tonacci, A., Mastorci, F., Mercuri, A., Mrakic-Sposta, S., Moretti, S., Andreassi, M. G., & Pratali, L. (2015). Chronic and acute effects of endurance training on telomere length. Mutagenesis, 30(5), 711–716.

    CAS  PubMed  Google Scholar 

  83. La Gerche, A., & Heidbuchel, H. (2014). Can intensive exercise harm the heart? You can get too much of a good thing. Circulation, 130(12), 992–1002.

    PubMed  Google Scholar 

  84. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., & Castelli, W. P. (1990). Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. The New England Journal of Medicine, 322(22), 1561–1566.

    CAS  PubMed  Google Scholar 

  85. Xiao, J., Xu, T., Li, J., Lv, D., Chen, P., Zhou, Q., & Xu, J. (2014). Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International Journal of Clinical and Experimental Pathology, 7(2), 663–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Waring, C. D., Vicinanza, C., Papalamprou, A., Smith, A. J., Purushothaman, S., Goldspink, D. F., Nadal-Ginard, B., Torella, D., & Ellison, G. M. (2014). The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European Heart Journal, 35(39), 2722–2731.

    CAS  PubMed  Google Scholar 

  87. Marketou, M. E., Parthenakis, F., & Vardas, P. E. (2016). Pathological left ventricular hypertrophy and stem cells: Current evidence and new perspectives. Stem Cells International, 2016, 5720758.

    PubMed  Google Scholar 

  88. Lan, F., Lee, A. S., Liang, P., Sanchez-Freire, V., Nguyen, P. K., Wang, L., Han, L., Yen, M., Wang, Y., Sun, N., Abilez, O. J., Hu, S., Ebert, A. D., Navarrete, E. G., Simmons, C. S., Wheeler, M., Pruitt, B., Lewis, R., Yamaguchi, Y., Ashley, E. A., Bers, D. M., Robbins, R. C., Longaker, M. T., & Wu, J. C. (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell, 12(1), 101–113.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Dalle Carbonare.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenti, M., Dalle Carbonare, L., Dorelli, G. et al. Effects of physical exercise on the prevention of stem cells senescence. Stem Cell Rev and Rep 16, 33–40 (2020). https://doi.org/10.1007/s12015-019-09928-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09928-w

Keywords

Navigation