Skip to main content
Log in

The Interaction of Flavonols with Membrane Components: Potential Effect on Antioxidant Activity

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Flavonols are the most widely distributed class of dietary flavonoids with a wide range of pharmacological properties due to their potent lipid peroxidation inhibition activity. The permeability and orientation of these compounds in lipid bilayers can provide an understanding of their antioxidant and lipid-peroxidation inhibition activity based on their structures at the molecular level. For this purpose, we studied antioxidant activity and atomic-scale molecular dynamics simulations of 3-hydroxyflavone (fisetin), 5-hydroxyflavone (apigenin) and 3,5-hydroxyflavone (morin) in palmitoyloleylphosphatidylcholine (POPC) membrane models with 0 mol% and 40 mol% cholesterol concentration. In pure POPC bilayer with 0 mol% cholesterol concentration, the flavonols penetrated into bilayer with lowest free energy profiles, however, incorporation of 40% cholesterol concentration reduced the permeability of the flavonols. Higher cholesterol concentrations in the POPC lipid bilayer resulted in an increase of the bilayer thickness and corresponding decrease in the area per lipid which rationalizes the reduced partitioning of flavonols due to cholesterol. In the presence of cholesterol, the flavonols reside at the polar interfacial region of the lipid bilayer to form higher H-bonding interactions with cholesterol molecules in addition to water and lipid oxygens. Among all the selected flavonols, morin showed the highest affinity which was driven by the hydrophobic effect as also depicted by ITC (Isothermal titration calorimetry) experiments and thus, more efficient antioxidant in scavenging superoxide, nitric oxide radicals as well as lipid peroxyl radicals. Furthermore, our simulations also confirmed that the permeability of compounds is sensitive towards the cholesterol content in the membrane.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera Y, Martin-Cabrejas MA, de Mejia EG (2016) Phenolic compounds in fruits and beverages consumed as part of the mediterranean diet: their role in prevention of chronic diseases. Phytochem Rev 15:405–423

    CAS  Google Scholar 

  • Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO (2017) Neuroprotective effect of Fisetin Against amyloid-beta induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 54:2269–2285

    CAS  PubMed  Google Scholar 

  • Asgar A (2013) Anti-diabetic potential of phenolic compounds: a review. Int J Food Prop 16:91–103

    CAS  Google Scholar 

  • Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp DM, Repasky MP, Zhang LY, Berne BJ, Friesner RA, Gallicchio E, Levy RM (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 26:1752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budhraja A, Gao N, Zhang Z, Son Y, Cheng S, Wang X, Ding S, Hitron A, Chen G, Luo J, Shi X (2012) Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol Cancer Ther 11:132–142

    CAS  PubMed  Google Scholar 

  • D’Andrea G (2015) Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–271

    PubMed  Google Scholar 

  • Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, Abdollahi M (2017) Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomed 12:2689–2702

    CAS  Google Scholar 

  • De Young LR, Dill KA (1988) Aggregation and denaturation of apomyoglobin in aqueous urea solutions. Biochemistry 27:5281–5289

    PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    CAS  Google Scholar 

  • Evans DJ, Holian BL (1985) The Nose-Hoover thermostat. J Chem Phys 83:4069–4074

    CAS  Google Scholar 

  • Fu CY, Chen MC, Tseng YS, Chen MC, Zhou Z, Yang JJ, Lin YM, Viswanadha VP, Wang G, Huang CY (2019) Fisetin activates Hippo pathway and JNK/ERK/AP-1 signaling to inhibit proliferation and induce apoptosis of human osteosarcoma cells via ZAK overexpression. Environ Toxicol 34:902–911

    CAS  PubMed  Google Scholar 

  • Gonçalves S, Romano A (2017) Inhibitory properties of phenolic compounds against enzymes linked with human diseases, Chapter 6. Phenolic compounds-biological activity. IntechOpen, London

    Google Scholar 

  • Gurer-Orhan H, Ince E, Konyar D, Saso L, Suzen S (2018) The role of oxidative stress modulators in breast cancer. Curr Med Chem 25:4084–4101

    CAS  PubMed  Google Scholar 

  • Haddad AQ, Venkateswaran V, Viswanathan L, Teahan SJ, Fleshner NE, Klotz LH (2006) Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis 9:68–76

    CAS  PubMed  Google Scholar 

  • Hanneken A, Lin FF, Johnson J, Maher P (2006) Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci 47:3164–3177

    PubMed  Google Scholar 

  • Higa S, Hirano T, Kotani M, Matsumoto M, Fujita A, Suemura M, Kawase I, Tanaka T (2003) Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils. J Allergy Clin Immunol 111:1299–1306

    CAS  PubMed  Google Scholar 

  • Ji Y, Jia L, Zhang Y, Xing Y, Wu X, Zhao B, Zhang D, Xu X, Qiao X (2018) Antitumor activity of the plant extract morin in tongue squamous cell carcinoma cells. Oncol Rep 40:3024–3032

    CAS  PubMed  Google Scholar 

  • Karamia L, Jalili S (2014) Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study. J Biomol Struct Dyn 33:1254–1268

    Google Scholar 

  • Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A (2018) Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci 194:75–87

    CAS  PubMed  Google Scholar 

  • Kempuraj D, Madhappan B, Chirstodoulou S, Boucher W, Cao J, Papadopoulou N, Cetrulo CL, Theoharides TC (2005) Flavonoids inhibits pro-inflammatory mediator release, intracellular calcium ion levels, and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol 145:934–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kocábováa J, Kolivoškaa V, Gálb M, Sokolová R (2018) Tuning phospholipid bilayer permeability by flavonoid apigenin: electrochemical and atomic force microscopy study. J Electroanal Chem 221:67–72

    Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    CAS  PubMed  Google Scholar 

  • Krautler V, Gunsteren WFV, Hunenberger PH (2001) A fast SHAKE: algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comp Chem 22:501–508

    CAS  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. https://doi.org/10.1155/2013/162750

    Article  Google Scholar 

  • Liu FF, Dong XY, He L, Middelberg APJ, Sun Y (2011) Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (−)-epigallocatechin- 3-gallate probed by molecular simulations. J Phys Chem B 115:11879–11887

    CAS  PubMed  Google Scholar 

  • Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S (2017) Shedding light on the puzzle of drug-membrane interactions: experimental techniques and molecular dynamics simulations. Prog Lipid Res 65:24–44

    CAS  PubMed  Google Scholar 

  • Lupanova T, Petkova D, Markovska T, Staneva G, Chakarov S, Skrobanska R, Pankov R, Momchilova A (2012) Effect of cholesterol modulation on the antioxidant potential of quercetin in rat liver plasma membranes. Compt Rend Acad Bulg Sci 65:639–644

    CAS  Google Scholar 

  • Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci USA 103:16568–16573

    CAS  PubMed  Google Scholar 

  • Mao Z, Gan C, Zhu J, Ma N, Wu L, Wang L, Wang X (2017) Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg Med Chem Lett 15:2812–2817

    Google Scholar 

  • Markovic Z, Milenkovic D, Dorovic J, Markovic JMD, Stepanic V, Lucic B, Amic D (2012) Free radical scavenging activity of morin 2′-O(-) phenoxide anion. Food Chem 135:2070–2077

    CAS  PubMed  Google Scholar 

  • Martyna GJ (1994) Remarks on constant-temperature molecular dynamics with momentum conservation. Phys Rev E 50:3234–3236

    CAS  Google Scholar 

  • Morimoto Y, Baba T, Sasaki T, Hiramatsu K (2015) Apigenin as ananti-quinolone-resistance antibiotic. Int J Antimicrob Agents 46:666–673

    CAS  PubMed  Google Scholar 

  • Neuvonen M, Manna M, Mokkila S, Javanainen M, Rog T, Liu Z, Bittman R, Vattulainen I, Ikonen E (2014) Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes. PLoS ONE 9:e103743

    PubMed  PubMed Central  Google Scholar 

  • Ola MS, Aleisa AM, Al-Rejaie SS, Abuohashish HM, Parmar MY, Alhomida AS, Ahmed MM (2014) Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol Sci 35:1003–1008

    PubMed  Google Scholar 

  • Ossman T, Fabre G, Trouillas P (2016) Interaction of wine anthocyanin derivatives with lipid bilayer membranes. Comput Theor Chem 1077:80–86

    CAS  Google Scholar 

  • Pal HC, Sharma S, Elmets CA, Athar M, Afaq F (2013) Fisetin inhibits growth, induces G(2)/M arrest and apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation. Exp Dermatol 22:470–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit SA, Chiu SW, Jakobsson E, Grama A, Scott HL (2008) Cholesterol packing around lipids with saturated and unsaturated chains: a simulation study. Langmuir 24:6858–6865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papahadjopoulos D, Nir S, Ohki S (1972) Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochim Biophys Acta Biomemb 266:561–583

    CAS  Google Scholar 

  • Papay ZE, Kosa A, Boddi B, Merchant Z, Saleem IY, Zariwala MG, Klebovich I, Somavarapu S, Antal L (2017) Study on the pulmonary delivery system of apigenin-loaded albumin nanocarriers with antioxidant activity. J Aerosol Med Pulm Drug Deliv 30:274–288

    CAS  PubMed  Google Scholar 

  • Park C, Lee WS, Go SI, Nagappan A, Han MH, Hong SH, Kim GS, Kim GY, Kwon TK, Ryu CH, Shin SC, Choi YH (2014) Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells. Int J Mol Sci 16:645–659

    PubMed  PubMed Central  Google Scholar 

  • Patil RH, Babu RL, Kumar MN, Kumar KMK, Hegde SM, Nagesh R, Ramesh GT, Sharma SC (2016) Anti-Inflammatory effect of Apigenin on LPS-induced pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation 39:138–147

    CAS  PubMed  Google Scholar 

  • Peng HL, Huang WC, Cheng SC, Liou CJ (2018) Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways. Int Immunopharmacol 60:202–210

    CAS  PubMed  Google Scholar 

  • Prasath GS, Subramanian SP (2013) Fisetin, a tetra hydroxy flavone recuperates antioxidant status and protects hepatocellular ultrastructure from hyperglycemia mediated oxidative stress in streptozotocin induced experimental diabetes in rats. Food Chem Toxicol 59:249–255

    CAS  PubMed  Google Scholar 

  • Qu Y, Wang C, Liu N, Gao C, Liu F (2018) Morin exhibits anti-inflammatory effects on IL-1β stimulated human osteoarthritis chondrocytes by activating the Nrf2 signaling pathway. Cell Physiol Biochem 51:1830–1838

    CAS  PubMed  Google Scholar 

  • Reiner GN, Fraceto LF, de Paula E, Perillo MA, Garcia DA (2013) Effects of Gabaergic phenols on phospholipid bilayers as evaluated by 1H-NMR. J Biomat Nanobiot 4:1–7

    Google Scholar 

  • Roìg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2009) Ordering effects of cholesterol and its analogues. Biochim Biophys Acta 1788:7–121

    Google Scholar 

  • Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27:1588–1596

    CAS  PubMed  Google Scholar 

  • Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486

    CAS  PubMed  Google Scholar 

  • Sanver D, Murray BS, Sadeghpour A, Rappolt M, Nelson AL (2016) Experimental modeling of flavonoid biomembrane interactions. Langmuir 13:13234–13243

    Google Scholar 

  • Selvakumar GP, Dhanraj V, Krishnamoorthy M, Tamilarasan M (2012) Morin attenuates haloperidol induced tardive dyskinesia and oxidative stress in mice. J Nat Sci Res 2:153–165

    Google Scholar 

  • Shinoda W (2016) Permeability across lipid membranes. Biochim et Biophys Acta Biomemb 1858:2254–2265

    CAS  Google Scholar 

  • Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha K, Ghosh J, Sil PC (2016) Morin and its role in chronic diseases. Adv Exp Med Biol 928:453–471

    CAS  PubMed  Google Scholar 

  • Sirk TW, Friedman M, Brown EF (2011) Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. J Agric Food Chem 59:3780–3787

    CAS  PubMed  Google Scholar 

  • Stach M, Maillard N, Kadam RU, Kalbermatter D, Meury M, Page MGP, Fotiadis D, Darbre T, Reymond J (2012) Membrane disrupting antimicrobial peptide dendrimers with multiple amino termini. Med Chem Commun 3:86–89

    CAS  Google Scholar 

  • Subczynski W, Wisniewska A, Yin J, Hyde J, Kusumi A (1994) Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochem 33:7670–7681

    CAS  Google Scholar 

  • Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic Biol Med 27:1313–1323

    CAS  PubMed  Google Scholar 

  • Sun X, Ma X, Li Q, Yang Y, Xu X, Sun J, Yu M, Cao K, Yang L, Yang G, Zhang G, Wang X (2018) Anti–cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: in vitro and in vivo studies. Int J Mol Med 42:811–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syed DN, Afag F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, Setaluri V, Mukhtar H (2011) Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β- catenin signaling and decreased Mitf levels. J Invest Dermatol 131:1291–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmschneider JP, Ulmschneider MB (2018) Molecular dynamics simulations are redefining our view of peptides interacting with biological membranes. Acc Chem Res 51:1106–1116

    CAS  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev 9:112–125

    Google Scholar 

  • Verstraeten SV, Fraga CG, Oteiza PI (2015) Interactions of flavan-3-ols and procyanidins with membranes: mechanisms and the physiological relevance. Food Funct 6:32–40

    CAS  PubMed  Google Scholar 

  • Wennberg CL, van der Spoel D, Hub JS (2012) Large influence of cholesterol on solute partitioning into lipid membranes. J Am Chem Soc 134:5351–5361

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang RA (2006) computational analysis of the binding affinities of FKBP12 inhibitors using the MM-PB/SA method. Prot Struct Funct Bioinfo 64:1058–1068

    CAS  Google Scholar 

  • Yao D, Cui H, Zhou S, Guo L (2017) Morin inhibited lung cancer cells viability, growth, and migration by suppressing miR-135b and inducing its target CCNG2. Tumour Biol 39:1010428317712443

    PubMed  Google Scholar 

  • Youns M, Abdel HHW (2017) The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PLoS ONE 12:e0169335

    PubMed  PubMed Central  Google Scholar 

  • Zhang R, Kang KA, Kang SS, Park JW, Hyun JW (2011) Morin (2′,3,4′,5,7- pentahydroxyflavone) protected cells against c-radiation-induced oxidative stress. Basic Clin Pharmacol Toxicol 108:63–72

    CAS  PubMed  Google Scholar 

  • Zhang H, Zheng W, Feng X, Yang F, Qin H, Wu S, Hou DX, Chen J (2019) Nrf2ARE signaling acts as master pathway for the cellular antioxidant activity of Fisetin. Molecules 24:E708

    PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Indian Institute of Technology Delhi HPC facility for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarmistha Saha.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interests.

Research Involving Human and Animal Participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

232_2019_105_MOESM1_ESM.jpg

Supplementary material 1 Planar chemical structures of the compounds: (A) fisetin, (B) apigenin and (C) morin. The 2-D chemical structures were obtained by ChemDraw 12.0 and the 3-D structures were obtained by the program PyMOL. (JPEG 85 kb)

232_2019_105_MOESM2_ESM.jpg

Supplementary material 2 Snapshots of MD simulations at 25 and 50 ns in the POPC lipid bilayer characteristic to the location (a, b) fisetin, (c, d) apigenin and (e, f) morin, respectively. (JPEG 333 kb)

232_2019_105_MOESM3_ESM.jpg

Supplementary material 3 Snapshots of MD simulations at 25 and 50 ns in the POPC lipid bilayer with 40% cholesterol characteristic to the location (a, b) fisetin, (c, d) apigenin and (e, f) morin, respectively.(JPEG 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Panieri, E., Suzen, S. et al. The Interaction of Flavonols with Membrane Components: Potential Effect on Antioxidant Activity. J Membrane Biol 253, 57–71 (2020). https://doi.org/10.1007/s00232-019-00105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00105-1

Keywords

Navigation