Skip to main content
Log in

Methods for the Synthesis of Triethanolamine

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Triethanolamine (TEA) is a highly demanded product in medium- and low-tonnage chemistry used in many fields of production (textile and cement industry, production of coolant-lubricants, cosmetics, household chemicals, pharmaceuticals, etc.), which dictates wide requirements to its quality. The quality of the product and its consumer properties depend on the production technology. The review considers various methods for TEA production, including catalytic processes, from the viewpoint of product purity and applications. Some possible methods for further improving the consumer properties of TEA were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

REFERENCES

  1. Yaphary, Y.L., Yu, Z., Lam, R.H.W., and Lau, D., Constr. Build. Mater., 2017, vol. 141, pp. 94–103.

    Article  CAS  Google Scholar 

  2. Wang, X.Y., Lan, M.Z., Hou, W.F., Xiang, B.F., and Zhao, X.D., Mater. Sci. Forum, 2017, vol. 898, pp. 2010–2017.

    Article  Google Scholar 

  3. Xhanari, K., Grah, N., Finšgar, M., Fuchs-Godec, R., and Maver, U., Chem. Pap., 2017, vol. 71, no. 1, pp. 81–89.

    Article  CAS  Google Scholar 

  4. Saidi, M., J. Taiwan Inst. Chem. Eng., 2017, vol. 80, pp. 301–313.

    Article  CAS  Google Scholar 

  5. Saghafi, H. and Arabloo, M., Int. J. Greenhouse Gas Control, 2017, vol. 58, pp. 256–265.

    Article  CAS  Google Scholar 

  6. He, K., Xie, J., Li, M., and Li, X., Appl. Surf. Sci., 2018, vol. 430, pp. 208–217.

    Article  CAS  Google Scholar 

  7. Chen, N., Teng, J., Jiao, F.-P., Jiang, X.-Y., Hao, X., and Yu, J.-G., Desalin. Water Treat., 2017, vol. 71, pp. 191–200.

    Article  CAS  Google Scholar 

  8. Ramírez, C. and Calderón, J.A., J. Electroanal. Chem., 2016, vol. 765, pp. 132–139.

    Article  CAS  Google Scholar 

  9. Maleki, B., Baghayeri, M., Sheikh, S., Babaee, S., and Farhadi, S., Russ. J. Gen. Chem., 2017, vol. 87, no. 5, pp. 1064–1072.

    Article  CAS  Google Scholar 

  10. Roli, F.M., Yussof, H.W., Saufi, S.M., Seman, M.N.A., and Mohammad, A.W., Chem. Eng. Trans., 2017, vol. 56, pp. 1507–1512.

    Google Scholar 

  11. Masoud, E.M., El-Bellihi, A.-A., Bayoumy, W.A., and Mousa, M.A., J. Alloys Compd., 2013, vol. 575, pp. 223–228.

    Article  CAS  Google Scholar 

  12. Kelly, M., Duay, J., Lambert, T.N., and Aidun, R., J. Electrochem. Soc., 2017, vol. 164, no. 14, pp. A3684–A3691.

    Article  CAS  Google Scholar 

  13. Gruzdev, M.S., Shmukler, L.E., Kudryakova, N.O., Kolker, A.M., and Safonova, L.P., J. Mol. Liq., 2018, vol. 249, pp. 825–830.

    Article  CAS  Google Scholar 

  14. Kondratenko, Y., Kochina, T., Fundamensky, V., Ignatyev, I., Panikorovskii, T., and Nyanikova, G., J. Mol. Liq., 2016, vol. 221, pp. 1218–1224.

    Article  CAS  Google Scholar 

  15. Fundamensky, V.S., Kochina, T.A., Kondratenko, Y.A., Zolotarev, A.A., Vlasov, Y.G., and Ignatyev, I.S., J. Mol. Liq., 2017, vol. 230, pp. 113–120.

    Article  CAS  Google Scholar 

  16. Zhao, Y., Qiu, J., Li, Z., Wang, H., Fan, M., and Wang, J., ChemSusChem, 2017, vol. 10, no. 9, pp. 2001–2007.

    Article  CAS  PubMed  Google Scholar 

  17. Khoraamabadi-zad, A., Azadmanesh, M., Karamian, R., Asadbegy, M., and Akbari, M., RSC Adv., 2014, vol. 4, no. 88, pp. 47721–47725.

    Article  CAS  Google Scholar 

  18. Brennan, B.J., Gust, D., and Brudvig, G.W., Tetrahedron Lett., 2014, vol. 55, no. 5, pp. 1062–1064.

    Article  CAS  Google Scholar 

  19. Alentiev, D.A., Chapala, P.P., Filatova, M.P., Finkelshtein, E.S., and Bermeshev, M.V., Mendeleev Commun., 2016, vol. 26, no. 6, pp. 530–531.

    Article  CAS  Google Scholar 

  20. Bessi, M., Monini, M., Calamante, M., Mordini, A., Sinicropi, A., Basosi, R., Di Donato, M., Foggi, P., Iagatti, A., Zani, L., and Reginato, G., Synthesis (Stuttg.), 2017, vol. 49, no. 17, pp. 3975–3984.

    Article  Google Scholar 

  21. Wang, H., Qin, A., Li, X., Zhao, X., Liu, D., and He, C., J. Polym. Sci., Part A: Polym. Chem., 2015, vol. 53, no. 21, pp. 2537–2545.

    Article  CAS  Google Scholar 

  22. Adamovich, S.N., Kuznetsova, G.A., Ushakov, I.A., Mirskov, R.G., and Mirskova, A.N., Russ. Chem. Bull., 2016, vol. 65, no. 3, pp. 826–827.

    Article  CAS  Google Scholar 

  23. Han, A., Li, L., Qing, K., Qi, X., Hou, L., Luo, X., Shi, S., and Ye, F., Bioorg. Med. Chem. Lett., 2013, vol. 23, no. 5, pp. 1310–1314.

    Article  CAS  PubMed  Google Scholar 

  24. Frauenkron, M., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2001, pp. 547–572.

    Google Scholar 

  25. Tsuneki, H., Kirishiki, M., and Oku, T., Bull. Chem. Soc. Jpn., 2007, vol. 80, no. 6, pp. 1075–1090.

    Article  CAS  Google Scholar 

  26. Zahedi, G., Amraei, S., and Biglari, M., Korean J. Chem. Eng., 2009, vol. 26, no. 6, pp. 1504–1511.

    Article  CAS  Google Scholar 

  27. Knorr, L., Ber. Dtsch. Chem. Ges., 1899, vol. 32, no. 1, pp. 729–732.

    Article  CAS  Google Scholar 

  28. Wurtz, A., Ann. Chem. Pharm., 1860, vol. 114, no. 1, pp. 51–54.

    Article  Google Scholar 

  29. Wurtz, A., Ann. Chem. Pharm., 1862, vol. 122, no. 3, pp. 354–359.

    Article  Google Scholar 

  30. Miki, M., Ito, T., Hatta, M., and Okabe, T., J. Jpn. Oil Chem. Soc., 1966, vol. 15, no. 5, pp. 215–220.

    Article  CAS  Google Scholar 

  31. GB Patent 825 475, 1958.

  32. US Patent 3 849 262, 1974.

  33. GB Patent 1 453 762, 1976.

  34. US Patent 6 353 138, 2002.

  35. US Patent 5 545 757, 1996.

  36. SK Patent 282 747, 1998.

  37. RF Patent 2 176 636, 2001.

  38. WO Patent 0 153 250, 2001.

  39. US Patent 4 119 670, 1978.

  40. US Patent 4 355 181, 1982.

  41. RF Patent 2 162 461, 2001.

  42. RF Patent 2 052 450, 1996.

  43. US Patent 2 004 068 143, 2004

  44. BR Patent 0 303 716, 2005.

  45. US Patent 6 388 137, 2002.

  46. US Patent 7 164 044-B2, 2007.

  47. WO Patent 2 005 035 481, 2005.

  48. CN Patent 101 100 433, 2008.

  49. RF Patent 2 605 421, 2016.

  50. Andreev, D.V., Makarshin, L.L., Gribovskii, A.G., Yushchenko, D.Y., Sergeev, E.E., Zhizhina, E.G., Pai, Z.P., and Parmon, V.N., Chem. Eng. J., 2015, vol. 259, pp. 252–256.

    Article  CAS  Google Scholar 

  51. CN Patent 106478430, 2017.

  52. Makarshin, L.L., Pai, Z.P., and Parmon, V.N., Russ. Chem. Rev., 2016, vol. 85, no. 2, pp. 139–155.

    Article  CAS  Google Scholar 

  53. Šalić, A., Tušek, A., and Zelić, B., J. Appl. Biomed., 2012, vol. 10, no. 3, pp. 137–153.

    Article  CAS  Google Scholar 

  54. WO Patent 0 132 600, 2001.

  55. DD Patent 298 633, 1992.

  56. DD Patent 298 634, 1992.

  57. DD Patent 298 635, 1992.

  58. DD Patent 298 636, 1992.

  59. EP Patent 0 690 043, 1996.

  60. US Patent 5 395 973, 1995.

  61. US Patent 7 119 231, 2006.

  62. DE Patent 4 323 774, 1996.

  63. EP Patent 0 652 207, 1995.

  64. EP Patent 0 941 986, 1999.

  65. EP Patent 1 219 592, 2002.

  66. EP Patent 1 104 752, 2001.

  67. US Patent 20030065224A1, 2003.

  68. Yano, H., Noda, A., Hukuhara, T., and Miyazawa, K., J. Am. Oil Chem. Soc., 1997, vol. 74, no. 7, pp. 891–893.

    Article  CAS  Google Scholar 

  69. US Patent 3 151 166, 1964.

  70. GB Patent 1 092 449, 1967.

  71. US Patent 4 567 303, 1986.

  72. US Patent 6 291 715, 2001.

  73. WO Patent 2 005 058 795, 2005.

  74. US Patent 2 007 270 615, 2007.

  75. US Patent 2 006 142 615, 2006.

  76. WO Patent 03 048 105, 2003.

  77. MacCallum, J.R., Compr. Polym. Sci., Suppl., 1989, vol. 74, no. 7, pp. 529–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Yu. Yushchenko, E. G. Zhizhina or Z. P. Pai.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushchenko, D.Y., Zhizhina, E.G. & Pai, Z.P. Methods for the Synthesis of Triethanolamine. Catal. Ind. 11, 113–118 (2019). https://doi.org/10.1134/S2070050419020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419020120

Keywords:

Navigation