Skip to main content
Log in

An approach for improving the NRLMSISE-00 model using a radiosonde at Golmud of the Tibetan Plateau

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

It is believed that the Tibetan Plateau plays an important role in shaping the global atmospheric circulation and climate change. Due to the lack of observations in its surrounding area, previous studies mostly relied on numerical and empirical models to characterize the atmosphere over the Tibetan Plateau. For example, NRLMSISE-00 is a neutral atmospheric empirical model that has been widely used. In this study, NRLMSISE-00 model temperature data were compared with radiosonde temperature profiles obtained over Golmud, which is located in the northeast part of the Tibetan Plateau. Certain degree of deviations has been observed, especially in the warm season (here we defined from May 16 to October 15), with the temperature difference up to 19 K. A three-layer feed-forward neural network (NN) has been built to improve the NRLMSISE-00 model. Radiosonde temperature profiles from year 2013 to 2014 were used as training database for this NN. The radiosonde temperatures in year 2015 were then used to evaluate this method. Our results showed that the deviations between the NRLMSISE-00 model and the in situ radiosonde data have been significantly reduced. This study demonstrates the feasibility of NN for improving the atmospheric model accuracy using radiosonde data as training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bai Z, Bian J, Chen H (2017) Variation in the tropopause transition layer over China through analyzing high vertical resolution radiosonde data. Atmos Ocean Sci Lett 10:114–121. https://doi.org/10.1080/16742834.2017.1256188

    Article  Google Scholar 

  • Barnett J, Corney M (1985) Middle atmosphere reference model derived from satellite data. In: Labitzke K, Barnett JJ, Edwards B (eds) Handbook MAP. University of Illinois, Urbana, pp 47–85

    Google Scholar 

  • Bates DR (1959) Some problems concerning the terrestrial atmosphere above the 100 km level. Proc R Soc A Math Phys Eng Sci 253:451–462. https://doi.org/10.1098/rspa.1959.0207

    Article  Google Scholar 

  • Bell SW, Geller MA (2008) Tropopause inversion layer: seasonal and latitudinal variations and representation in standard radiosonde data and global models. J Geophy Res Atmos 113:D05109. https://doi.org/10.1029/2007JD009022

    Article  Google Scholar 

  • Bian J (2009) Recent advances in the study of atmospheric vertical structures in upper troposphere and lower stratosphere. Adv Earth Sci 24(3):262–271. https://doi.org/10.3321/j.issn:1001-8166.2009.03.005

    Article  Google Scholar 

  • Bian J, Chen H, Lu D (2004) Analysis of statistical characteristics of gravity waves in the upper stratosphere over Beijing using vertical high-resolution sounding data. Sci China Ser D Earth Sci 48:1548–1548

    Article  Google Scholar 

  • Bruinsma SL, Sánchez-Ortiz N, Olmedo E, Guijiarro N (2012) Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. J Space Weather Space Clim 2(A04):1–14. https://doi.org/10.1051/swsc/2012005

    Article  Google Scholar 

  • Che Y, Ma S, Xing F, Li S, Dai Y (2019) An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing. Meteorol Atmos Phys 131:681–695. https://doi.org/10.1007/s00703-018-0588-3

    Article  Google Scholar 

  • Chen X, Hu X, Xiao C, Wang X (2013) Correction method of the low earth orbital neutral density prediction based on the satellites data and NRLMSISE-00 model. Chin J Geophys 56:3246–3254. https://doi.org/10.6038/cjg20131003

    Article  Google Scholar 

  • Chernykh IV, Eskridge RE (1996) Determination of cloud amount and level from radiosonde soundings. J Appl Meteorol 35:1362–1369. https://doi.org/10.1175/1520-0450(1996)035%3c1362:DOCAAL%3e2.0.CO;2

  • Doornbos E, Klinkrad H, Visser P (2008) Use of two-line element data for thermosphere neural density model calibration. Adv Space Res 41:1115–1122. https://doi.org/10.1016/j.asr.2006.12.025

    Article  Google Scholar 

  • Fueglistaler S, Desller AE, Dunkerton TJ, Folkins I, Fu Q, Mote PW (2009) Trpical tropopause layer. Rev Geophys 47:1–31. https://doi.org/10.1029/2008RG000267

    Article  Google Scholar 

  • Gao D (1998) On structures of supervised linear basis function feedforward three-layered neural networks. Chin J Comput 21:80–86 (in Chinese)

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Macmillan College Publishing, New York

    Google Scholar 

  • Hedin AE (1983) A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J Geophys Res 88(A12):10170. https://doi.org/10.1029/ja088ia12p10170

    Article  Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92:4649–4662

    Article  Google Scholar 

  • Hedin AE (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res Space Phys 96:1159–1172. https://doi.org/10.1029/90JA02125

    Article  Google Scholar 

  • Hedin AE, Reber CA, Newton GP et al (1977) A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 2. Composition. J Geophys Res 82(16):2148–2156. https://doi.org/10.1029/JA082i016p02148

    Article  Google Scholar 

  • Hoinka KP (1998) Statistics of the global tropopause pressure. Mon Weather Rev 126(12):3303–3325. https://doi.org/10.1175/1520-0493(1998)126%3c3303:sotgtp%3e2.0.co;2

  • Hsieh WW, Tang B (1998) Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull Am Meteorol Soc 79:1855–1870. https://doi.org/10.1175/1520-0477(1998)079%3c1855:ANNMTP%3e2.0.CO;2

  • Kulkarni S, Harman G (2011) Multilayer networks. In: Kulkarni S, Harman G (eds) An elementary introduction to statistical learning theory. Wiley, New York, pp 99–115. https://doi.org/10.1002/9781118023471.ch10

    Chapter  Google Scholar 

  • Labitzke K, Barnett JJ, Edwards B (eds) (1985) Middle atmosphere program, MAP handbook, vol 16. University of Illinois, Urbana

    Google Scholar 

  • Mao K, Zuo Z, Shen X, Xu T, Gao C, Liu G (2018) Retrieval of land surface temperature from AMSR2 data using a deep dynamic learning neural network. Chin Geogr Sci 28:1–11. https://doi.org/10.1007/s11769-018-0930-1

    Article  Google Scholar 

  • Martin JD, Morton YT, Zhou Q (2005) Neural network development for the forecasting of upper atmosphere parameter distributions. Adv Space Res 36:2480–2485. https://doi.org/10.1016/j.asr.2003.12.015

    Article  Google Scholar 

  • Miao J, Liu S, Li Z, Qin G, Tang G (2011) Atmospheric density calibration using the real-time satellite observation. Chin J Space Sci 31:459–466 (in Chinese)

    Google Scholar 

  • Picone JM, Hedin AE, Drob DP et al (2000) Enhanced empirical models of the thermosphere. Phys Chem Earth Part C 25(5):537–542. https://doi.org/10.1016/S1464-1917(00)00072-6

    Article  Google Scholar 

  • Picone JM, Hedin AE, Drob DP (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107:SIA 15-1–SIA 15-16. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  • Santer BD (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301(5632):479–483. https://doi.org/10.1126/science.1084123

    Article  Google Scholar 

  • Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Z 12(3):131–136. https://doi.org/10.1127/0941-2948/2003/0012-0131

    Article  Google Scholar 

  • Shi L (2001) Retrieval of atmospheric temperature profiles from AMSU-A measurement using a neural network approach. J Atmos Ocean Tech 18(340):347. https://doi.org/10.1175/1520-0426(2001)018%3c0340:ROATPF%3e2.0.CO;2

  • World Meteorological Organization (WMO) (2003) WMO scientific assessment of ozone depletion 2002. WMO global ozone research and monitoring project report 47, Geneva, Switzerland, 2003, p 798

  • World Meteorological Organization (WMO) (1957) Meteorology—a three-dimensional science: second session of the commission for aerology. WMO Bull 6:134–138

    Google Scholar 

  • World Meteorological Organization (WMO) (1986) Atmospheric ozone 1985: global ozone research and monitoring project report 20, Geneva, Switzerland, p 392

  • Xiao C, Hu X (2010) Applying artificial neural networks to modeling the middle atmosphere. Adv Atmos Sci 27:883–890. https://doi.org/10.1007/s00376-009-9019-1

    Article  Google Scholar 

  • Zhou X, Zhao P, Chen J, Chen L, Li W (2009) Impacts of thermodynamic processes over the Tibetan Plateau on the northern hemispheric climate. Sci China Ser D Earth Sci 52:1679–1693. https://doi.org/10.1007/s11430-009-0194-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant no. 41127901). The authors would like to acknowledge the Golmud Meteorological Bureau for providing radiosonde data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Pan.

Additional information

Responsible Editor: S. Trini Castelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Pan, W., Hu, X. et al. An approach for improving the NRLMSISE-00 model using a radiosonde at Golmud of the Tibetan Plateau. Meteorol Atmos Phys 132, 451–459 (2020). https://doi.org/10.1007/s00703-019-00700-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-019-00700-w

Navigation