Skip to main content
Log in

Immobilization of Fungal Cellulase on Calcium Alginate and Xerogel Matrix

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

We conducted a study for immobilization of cellulase produced by Aspergillus tubingensis-IMMIS2 through pre-optimized solid-state fermentation of corn stover. Incredible increment in stability and catalytic activity of the immobilized cellulase was observed. Thermostability of the immobilized cellulase was increased to 82% at 75 °C as compared to that of free cellulase after 26 h of incubation. The cellulase activity was decreased after the 20th day of incubation of the both immobilized and free enzymes. Maximum cellulase activity was achieved at pH 4.5 (174 ± 0.4 U mL−1 min−1) and temperature 45 °C (179 ± 0.4 U mL−1 min−1) for xerogel matrix. The lowest Km value was found for the enzyme immobilized on xerogel as compared to those of immobilized on calcium alginate and free enzyme. Immobilization of cellulase on calcium alginate and xerogel matrix increased tolerance capacity of the enzyme to 75–82% against different activators and/or inhibitors like EDTA, SDS, Co2+, Ca2+ and Hg2+. The immobilized cellulase also revealed good fruit saccharification and yielded increased juice volume and hence proved to be a suitable candidate for biotechnological and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C:

Cellulase

CA:

Cellulase activity

CaA:

Calcium alginate

CMC:

Carboxymethyl cellulose

FC:

Free cellulase

IC:

Immobilized cellulase

MCM:

Magnetic chitosan microspheres

TMOS-1:

Tetramethoxysilane

TMOS-2:

Tetramethyl orthosilicate

XM:

Xerogel matrix

References

  1. Nagendran, S., Hallen-Adams, H.E., Paper, J.M., Aslam, N., Walton, J.D.: Reduced genomic potential for secreted plant cell wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet. Biol. 46, 427–435 (2009)

    Google Scholar 

  2. Sun, H., Ge, X., Hao, Z., Peng, M.: Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr. J. Biotechnol. 9(2), 163–166 (2010)

    Google Scholar 

  3. Yano, S., Ozaki, H., Matsuo, S., Ito, M., Wakayama, M., Takagi, K.: Production, purification and characterization of D-aspartate oxidase from the fungus Trichoderma harzianum SKW-36. Adv. Biosci. Biotechnol. 3(1), 7–13 (2012)

    Google Scholar 

  4. Orencio-Trejo, M., De la Torre-Zavala, S., Rodriguez-Garcia, A., Avilés-Arnaut, H., Gastelum-Arellanez, A.: Assessing the performance of bacterial cellulases: the use of Bacillus and Paenibacillus strains as enzyme sources for lignocellulose saccharification. Bioenergy Res. 9(4), 1023–1033 (2016)

    Google Scholar 

  5. Pandey, A.K., Edgard, G., Negi, S.: Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in sorghum stover based bioethanol production. Renew. Energy 98, 51–56 (2016)

    Google Scholar 

  6. Aslam, S., Hussain, A., Qazi, J.I.: Production of cellulase by Bacillus amyloliquefaciens-ASK11 under high chromium stress. Waste Biomass Valor. (2017). https://doi.org/10.1007/s12649-017-0046-3

    Article  Google Scholar 

  7. Imran, M., Anwar, Z., Irshad, M., Javid, A., Hussain, A., Ali, S.: Optimization of cellulase production from a novel strain of Aspergillus tubingenesis IMMIS2 through respons surface methodology. Biocatal. Agric. Biotechnol. 12, 191–198 (2017). https://doi.org/10.1016/j.bcab.2017.10.005

    Article  Google Scholar 

  8. Imran, M., Hussain, A., Anwar, Z., Irshad, M., Jabeen, F.: Beta-glucosidase production optimization from newly isolated Aspergillus tubingensis IMMIS2 using Taguchi statistical design. Iran. J. Sci. Technol. Trans. A (2017). https://doi.org/10.1007/s40995-017-0462-z

    Article  Google Scholar 

  9. Bakri, Y., Jacques, P., Thonart, P.: Xylanase production by Penicillium caescens 10–10c in solid-state fermentation. Appl. Biochem. Biotechnol. 108, 737–748 (2003)

    Google Scholar 

  10. Alriksson, B., Rose, S.H., Van Zyl, W.H., Sjode, A., Nilvebrant, N.O., Jonsson, L.J.: Cellulase production from spent lignocelluloses hydrolysates by recombinant Aspergillus niger. Appl. Environ. Microbiol. 75, 2366–2374 (2009)

    Google Scholar 

  11. Gori, M.I., Malana, M.A.: Production of carboxymethylcellulase from local isolate of Aspergillus species. Pak. J. Life Soc. Sci. 1, 1–6 (2010)

    Google Scholar 

  12. Iqbal, N.M.H., Ahmed, I., Zia, A.M., Irfan, M.: Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv. Biosci. Biotechnol. 2, 149–156 (2011)

    Google Scholar 

  13. Ghaffar, I., Imtiaz, A., Hussain, A., Javid, A., Jabeen, F., Akmal, M., Qazi, J.I.: Microbial production and industrial applications of keratinases: an overview. Int. Microbiol. (2018). https://doi.org/10.1007/s10123-018-0022-1

    Article  Google Scholar 

  14. Khoshnevisan, K., Bordbar, A.-K., Zare, D., Davoodi, D., Noruzi, M., Barkhi, M., Tabatabaei, M.: Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 171, 669–673 (2011)

    Google Scholar 

  15. Torres, L.G., Velasquez, A., Brito-Arias, M.A.: Ca-alginate spheres behavior in presence of some solvents and water-solvent mixtures. Adv. Biosci. Biotechnol. 2, 8 (2011)

    Google Scholar 

  16. Yoon, M., Hwang, H.J., Kim, J.H.: Immobilization of antibodies on the self-assembled monolayer by antigen-binding site protection and immobilization kinetic control. J. Biomed. Sci. Eng. 4, 242–247 (2011)

    Google Scholar 

  17. Minovska, V., Winkelhausen, E., Kuzmanova, S.: Lipases immobilized by different techniques on various support materials applied in oil hydrolysis. J. Serb. Chem. Soc. 70, 609–624 (2005)

    Google Scholar 

  18. Ariffin, H., Abdullah, N., UmiKalsom, M.S., Shirai, Y., Hassan, M.A.: Production and characterisation of cellulase produced by Bacillus pumilus EB3. Int. J. Eng. Technol. 3, 47–53 (2006)

    Google Scholar 

  19. Jing, L., Zhao, S., Xue, J.L., Zhang, Z., Yang, Q., Xian, L., Feng, J.X.: Isolation and characterization of a novel Penicillium oxalicum strain Z1-3 with enhanced cellobiohydrolase production using cellulase-hydrolyzed sugarcane bagasse as carbon source. Ind. Crop. Prod. 77, 666–675 (2015)

    Google Scholar 

  20. Saini, R., Saini, J.K., Adsul, M., Patel, A.K., Mathur, A., Tuli, D., Singhania, R.R.: Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour. Technol. 188, 240–246 (2015)

    Google Scholar 

  21. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S.: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013)

    Google Scholar 

  22. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  23. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39, 783–791 (1985)

    Google Scholar 

  24. Tamura, K., Nei, M.: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993)

    Google Scholar 

  25. Iqbal, H.M., Kamal, S., Ahmed, I., Naveed, M.T.: Enhanced bio-catalytic and tolerance properties of an indigenous cellulase through xerogel immobilization. Adv. Biosci. Biotechnol. 3, 308–313 (2012)

    Google Scholar 

  26. Tsai, C.-T., Meyer, A.S.: Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate. Molecules 19, 19390–19406 (2014)

    Google Scholar 

  27. Miao, X., Pi, L., Fang, L., Wu, R., Xiong, C.: Application and characterization of magnetic chitosan microspheres for enhanced immobilization of cellulase. Biocatal. Biotransform. 34(6), 272–282 (2016)

    Google Scholar 

  28. Imran, M., Asad, M.J., Gulfraz, M., Qureshi, R., Gul, H.I., Manzoor, N., Choudhary, A.N.: Glucoamylase production from Aspergillus niger by using solid state fermentation process. Pak. J. Bot. 44(6), 2103–2110 (2012)

    Google Scholar 

  29. Ince, A., Bayramoglu, G., Karagoz, B., Altintas, B., Bicak, N., Arica, M.Y.: A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem. Eng. J. 189–190, 404–412 (2012)

    Google Scholar 

  30. Ren, Y., Rivera, J.G., He, L., Kulkarni, H., Lee, D.K., Messersmith, P.B.: Facile, high efficiency immobilisation of lipase enzyme on magnetic iron oxide nanoparticle via a biomimetic coating. BMC Biotechnol. 11, 63 (2011)

    Google Scholar 

  31. Boniello, C., Mayr, T., Bolivar, J.M., Nidetzky, B.: Dual-lifetime referencing (DLR): a powerful method for on-line measurement of internal pH in carrier-bound immobilized biocatalysts. BMC Biotechnol. 12(1), 11 (2012)

    Google Scholar 

  32. Weiss, N., Borjesson, J., Pedersen, L.S., Meyer, A.S.: Enzymatic lignocellulose hydrolysis: improved cellulase productivity by insoluble solids recycling. Biotechnol. Biofuels 6, 5 (2013)

    Google Scholar 

  33. Bernardino, S., Estrela, N., Ochoa-Mendes, V., Fernandes, P., Fonseca, L.P.: Optimization of the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties. J. Sol-Gel. Sci. Technol. 58, 545–556 (2011)

    Google Scholar 

  34. Ahmad, R., Sardar, M.: Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem. 4, 178 (2015). https://doi.org/10.4172/2161-1009.1000178

    Article  Google Scholar 

  35. Rahim, S.N.A., Sulaimana, A., Hamzahb, F., Hamidb, K.H.K., Rodhib, M.N.M., Musab, M., Edamaa, N.A.: Enzymes encapsulation within calcium alginate-clay beads: characterization and application for cassava slurry saccharification. Procedia Eng. 68, 411–417 (2013)

    Google Scholar 

  36. Cascalheira, J.F., Queiroz, J.A.: Kinetic study of the cellobiase activity of Trichoderma reesei cellulase complex at high substrate concentrations. Biotechnol. Lett. 21, 651–655 (1999)

    Google Scholar 

  37. Erdemir, S., Sahin, O., Uyanik, A., Yilmaz, M.: Effect of the glutaraldehyde derivatives of Calix[n]arene as cross-linker reagents on lipase immobilization. J. Incl. Phenom. Macrocycl. Chem. 64, 273–282 (2009)

    Google Scholar 

  38. Fadel, M.: Production physiology of cellulases and β-glucosidase enzymes of Aspergillus niger grown under solid state fermentation conditions. J. Biol. Sci. 1(5), 401–411 (2000)

    Google Scholar 

  39. Saha, B.C.: Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem. 39, 1871–1876 (2004)

    Google Scholar 

  40. Ekperigin, M.M.: Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr. J. Biotechnol. 6, 28–33 (2007)

    Google Scholar 

  41. Thongekkaew, J., Ikeda, H., Masaki, K., Iefuji, H.: An acidic and thermostable carboxymethylcellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Expr. Purif. 60(2), 140–146 (2008)

    Google Scholar 

  42. Kim, M.S., Jo, W.J., Lee, D., Baeck, S.H., Shin, J.H., Lee, B.C.: Enhanced photocatalytic activity of TiO2 modified by e-beam irradiation. Bull. Korean Chem. Soc. 34(5), 1397–1400 (2013)

    Google Scholar 

  43. Zhou, J.: Immobilization of cellulase on a reversibly soluble- insoluble support: properties and application. J. Agric. Food Chem. 58, 6741–6746 (2010)

    Google Scholar 

  44. Bakare, M.K., Adewale, I.O., Ajayi, A., Shonukan, O.O.: Purufication and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. Afr. J. Biotechnol. 4, 898–904 (2004)

    Google Scholar 

  45. Lucas, R., Robles, A., Garcia, M.T., Alvarez De Cienfuegos, G., Galvez, A.: Production, purification, and properties of an endoglucanase produced by the Hyphomycete Chalara (Syn. Thielaviopsis) paradoxa CH32. J. Agric. Food Chem. 49(1), 79–85 (2001)

    Google Scholar 

  46. Will, F., Bauckhage, K., Dietrich, H.: Apple pomace liquefaction with pectinases and cellulases: analytical data of the corresponding juices. Eur. Food Res. Technol. 211, 291–297 (2000)

    Google Scholar 

  47. Vaillant, F., Millan, A., Dornier, M., Decloux, M., Reynes, M.: Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. J. Food Eng. 48, 83–90 (2001)

    Google Scholar 

  48. Barman, S., Sit, N., Badwaik, L.S., Deka, S.C.: Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J. Food Sci. Technol. 52(6), 3579–3589 (2015)

    Google Scholar 

Download references

Acknowledgements

The support of Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan for providing the consumable items to be used in this study, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hussain.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Hussain, A., Anwar, Z. et al. Immobilization of Fungal Cellulase on Calcium Alginate and Xerogel Matrix. Waste Biomass Valor 11, 1229–1237 (2020). https://doi.org/10.1007/s12649-018-0443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0443-2

Keywords

Navigation