Skip to main content
Log in

The Effect of Ti on the Early Stages of Oxidation of an Alumina-Forming NiCrAl Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Model γ-NiCrAl alloys with and without titanium were oxidized for short times up to 32 h at 1000 °C and subsequently characterized by scanning electron microscopy, transmission electron microscopy, and atom probe tomography in order to clarify the role of Ti on the oxidation behavior of alumina-forming nickel alloys. At the longer oxidation times, Ti was found to have no significant effect on the major protective oxide phases formed and overall scale and individual oxide layer thicknesses. Ti was observed to segregate to interfaces within the scale and form a Ti-rich oxide at the scale surface over time. At the shortest oxidation times before a continuous Al2O3 layer formed, the Ti-containing alloys exhibited thicker Cr2O3 layers, suggesting that Ti accelerates Cr2O3 growth kinetics. Additionally, oxide nodules resulting from fast oxidation of TiN particles were observed on the Ti-containing alloys. These may be linked to increased spalling propensity of Ti-containing alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. S. Pettit and C. S. Giggins, Journal of the Electrochemical Society: Solid State Science. 118, 1782 (1971).

    Article  Google Scholar 

  2. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2016).

    Google Scholar 

  3. D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals 86, 1 (2016).

    Article  Google Scholar 

  4. P. Y. Hou, Journal of the American Ceramic Society. 86, 660 (2003).

    Article  Google Scholar 

  5. H. Liu, M. M. Stack and S. B. Lyon, Solid State Ionics 109, 247 (1998).

    Article  Google Scholar 

  6. F. H. Stott, G. B. Wood and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  Google Scholar 

  7. R. C. Reed, The Superalloys: Fundamentals and Applications, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  8. S. Cruchley, H. E. Evans, M. P. Taylor, M. C. Hardy and S. Stekovic, Corrosion Science 75, 58 (2015).

    Article  Google Scholar 

  9. P. K. Arve Holt, Solid State Ionics 117, 21 (1999).

    Article  Google Scholar 

  10. N. Aran, A. A. Blacklocks, R. J. Packer, S. L. P. Savin and A. V. Chadwich, Solid State Ionics. 177, 2939 (2006).

    Article  Google Scholar 

  11. B. A. Pint and K. B. Alexander, Journal of the Electrochemical Society 145, 1819 (1998).

    Article  Google Scholar 

  12. B. A. Pint, M. Treska and L. W. Hobbs, Oxidation of Metals. 47, 1 (1997).

    Article  Google Scholar 

  13. G. J. Santoro, D. L. Deadmore, C. E. Lowell, Oxidation of Alloys in Nickel-Aluminum System with Third-Element Additions of Chromium, Silicon, and Titanium at 1100 C. NASA Technical Note (1971).

  14. D. Clemens, W. J. Quadakkers and L. Singheiser, Electrochemical Society Proceedings 98-9, 134 (1998).

    Google Scholar 

  15. D. Naumenko, V. Kochubey, L. Niewolak, A. Dymiati, J. Mayer, L. Singheiser and W. J. Quadakkers, Journal of Materials Science. 43, 4550 (2008).

    Article  Google Scholar 

  16. B. A. Pint and K. A. Unocic, Materials at High Temperatures. 29, 257 (2012).

    Article  Google Scholar 

  17. G. R. Wallwork and A. Z. Hed, Oxidation of Metals. 3, 171 (1971).

    Article  Google Scholar 

  18. T. J. Nijdam, N. M. van der Pers and W. G. Sloof, Materials and Corrosion. 57, 269 (2006).

    Article  Google Scholar 

  19. T. J. Nijdam, L. P. H. Jeurgens and W. G. Sloof, Materials at High Temperatures. 20, 311 (2003).

    Article  Google Scholar 

  20. L. Hu, D. B. Hovis and A. H. Heuer, Oxidation of Metals. 73, 275 (2010).

    Article  Google Scholar 

  21. T. J. Nijdam, L. P. H. Jeurgens and W. G. Sloof, Acta Materialia. 53, 1643 (2005).

    Article  Google Scholar 

  22. R. A. Rapp, Kinetics, Microstructures and Mechanism of Internal Oxidation- Its Effect and Prevention in High Temperature Alloy Oxidation. 21st Conference, National Association of Corrosion Engineers, St. Louis, MO, (1965).

  23. H. C. Yi, S. W. Guan, W. W. Smeltzer and A. Petric, Acta Metallurgica et Materialia 42, 981 (1994).

    Article  Google Scholar 

  24. F. H. Stott and G. C. Wood, Materials Science and Technology. 4, 1072 (1988).

    Article  Google Scholar 

  25. G. M. Kale and D. J. Fray, Metallurgical and Materials Transactions B. 25B, 373 (1994).

    Article  Google Scholar 

  26. B. A. Pint, Oxidation of Metals. 45, 1 (1996).

    Article  Google Scholar 

  27. W. J. Quadakkers, D. Naumenko, L. Singheiser, H. J. Penkalla, A. K. Tyagi and A. Czyrska-Filemonowicz, Materials and Corrosion. 51, 350 (2000).

    Article  Google Scholar 

  28. L. Huang, X. F. Sun, H. R. Guan and Z. Q. Hu, Tribology Letters. 23, 15 (2006).

    Article  Google Scholar 

  29. J. Litz, A. Rahmel and M. Schorr, Oxidation of Metals. 30, 95 (1988).

    Article  Google Scholar 

  30. J. H. Chen, P. M. Rogers and J. A. Little, Oxidation of Metals. 47, 381 (1997).

    Article  Google Scholar 

  31. R. J. Bennett, R. Krakow, A. S. Eggeman, C. N. Jones, H. Murakami and C. M. F. Rae, Acta Materialia. 92, 278 (2015).

    Article  Google Scholar 

  32. J. A. Haynes, K. A. Unocic, M. J. Lance and B. A. Pint, Oxidation of Metals. 86, 453 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge funding from the National Science Foundation under Grant DMR-1352157, and instrument access and technique support from the Michigan Center for Materials Characterization and the Robert B. Mitchell Electron Microbeam Analysis Laboratory at the University of Michigan. The authors would like to thank Prof. Roger Reed and Dr. Yilun Gong at the University of Oxford for initial discussions and for providing Alloys 1, 2, and 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle A. Marquis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barth, T.L., Marquis, E.A. The Effect of Ti on the Early Stages of Oxidation of an Alumina-Forming NiCrAl Alloy. Oxid Met 92, 13–26 (2019). https://doi.org/10.1007/s11085-019-09911-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09911-3

Keywords

Navigation