Skip to main content

Advertisement

Log in

Brain activity during time to contact estimation: an EEG study

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Understanding the neural mechanisms associated with time to contact (TTC) estimation is an intriguing but challenging task. Despite the importance of TTC estimation in our everyday life, few studies have been conducted on it, and there are still a lot of unanswered questions and unknown aspects of this issue. In this study, we intended to address one of these unknown aspects. We used independent component analysis to systematically assess EEG substrates associated with TTC estimation using two experiments: (1) transversal motion experiment (when a moving object passes transversally in the frontoparallel plane from side to side in front of the observer), and (2) head-on motion experiment (when the observer is on the motion path of the moving object). We also studied the energy of all EEG sources in these two experiments. The results showed that brain regions involved in the transversal and head-on motion experiments were the same. However, the energy used by some brain regions in the head-on motion experiment, including some regions in left parietotemporal and left frontal lobes, was significantly higher than the energy used by those regions in the transversal motion experiment. These brain regions are dominantly associated with different kinds of visual attention, integration of visual information, and responding to visual motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Battaglini L, Campana G, Camilleri R, Casco C (2015) Probing the involvement of the earliest levels of cortical processing in motion extrapolation with rapid forms of visual motion priming and adaptation. Atten Percept Psychophys 77:603–612

    Article  PubMed  Google Scholar 

  • Beer J, Blakemore C, Previc FH, Liotti M (2002) Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Exp Brain Res 143:78–88

    Article  PubMed  Google Scholar 

  • Bernard R, Goran D, Sakai S, Carr T, McFarlane D, Nordell B, Cooper T, Potchen E (2002) Cortical activation during rhythmic hand movements performed under three types of control: an fMRI study. Cognit Affect Behav Neurosci 2:271–281

    Article  CAS  Google Scholar 

  • Billington J, Wilkie RM, Field DT, Wann JP (2010) Neural processing of imminent collision in humans. Proc R Soc B Biol Sci 278:1476–1481

    Article  Google Scholar 

  • Cao Y, Towle VL, Levin DN, Balter JM (1993) Functional mapping of human motor cortical activation with conventional MR imaging at 1.5 T. J Magn Reson Imaging 3:869–875

    Article  CAS  PubMed  Google Scholar 

  • Chang C-J, Jazayeri M (2018) Integration of speed and time for estimating time to contact. Proc Natl Acad Sci 115:E2879–E2887

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-C, Duann J-R, Chuang S-W, Lin C-L, Ko L-W, Jung T-P, Lin C-T (2010) Spatial and temporal EEG dynamics of motion sickness. NeuroImage 49:2862–2870

    Article  PubMed  Google Scholar 

  • Cheng K, Fujita H, Kanno I, Miura S, Tanaka K (1995) Human cortical regions activated by wide-field visual motion: an H2 (15) O PET study. J Neurophysiol 74:413–427

    Article  CAS  PubMed  Google Scholar 

  • Ciaramitaro VM, Buracas GT, Boynton GM (2007) Spatial and cross-modal attention alter responses to unattended sensory information in early visual and auditory human cortex. J Neurophysiol 98:2399–2413

    Article  PubMed  Google Scholar 

  • Coull JT, Vidal F, Goulon C, Nazarian B, Craig C (2008) Using time-to-contact information to assess potential collision modulates both visual and temporal prediction networks. Front Hum Neurosci 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasdemir Y, Yildirim E, Yildirim S (2017) Analysis of functional brain connections for positive–negative emotions using phase locking value. Cognit Neurodyn 11:487–500

    Article  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 16:92–103

    Article  PubMed  Google Scholar 

  • Dupont P, Orban G, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424

    Article  CAS  PubMed  Google Scholar 

  • Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15:453–458

    Article  CAS  PubMed  Google Scholar 

  • Freund H (1990) Premotor area and preparation of movement. Rev Neurol 146:543–547

    CAS  PubMed  Google Scholar 

  • Gerlach C, Aaside C, Humphreys G, Gade A, Paulson OB, Law I (2002) Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia 40:1254–1267

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (2014) The ecological approach to visual perception, classic edn. Psychology Press, London

    Book  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Nam KW, Jang DP, Kim IY (2019) Effects of degree and symmetricity of bilateral spectral smearing, carrier frequency, and subject sex on amplitude of evoked auditory steady-state response signal. Cognit Neurodyn 13:151–160

    Article  Google Scholar 

  • Jack AI, Shulman GL, Snyder AZ, McAvoy M, Corbetta M (2006) Separate modulations of human V1 associated with spatial attention and task structure. Neuron 51:135–147

    Article  CAS  PubMed  Google Scholar 

  • Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements: II. the effect of movement predictability on regional cerebral blood flow. Brain 123:1216–1228

    Article  PubMed  Google Scholar 

  • Jovicich J, Peters RJ, Koch C, Braun J, Chang L, Ernst T (2001) Brain areas specific for attentional load in a motion-tracking task. J Cognit Neurosci 13:1048–1058

    Article  CAS  Google Scholar 

  • Jung T-P, Makeig S, McKeown MJ, Bell AJ, Lee T-W, Sejnowski TJ (2001a) Imaging brain dynamics using independent component analysis. Proc IEEE 89:1107–1122

    Article  Google Scholar 

  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001b) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14:166–185

    Article  CAS  PubMed  Google Scholar 

  • Knowles W (1958) Estimating time-to-collision. Am Psychol 13:405–406

    Google Scholar 

  • Lamm C, Windischberger C, Leodolter U, Moser E, Bauer H (2001) Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials. Neuroimage 14:268–283

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Mo L, Chen Q (2015) Differential contribution of velocity and distance to time estimation during self-initiated time-to-collision judgment. Neuropsychologia 73:35–47

    Article  PubMed  Google Scholar 

  • Lowry R (2013) Concepts and applications of inferential statistics. http://vassarstats.net/textbook/ch14pt2.html

  • Makeig S, Bell AJ, Jung T-P, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. In: Advances in neural information processing systems, pp 145–151

  • Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690–694

    Article  CAS  PubMed  Google Scholar 

  • Merchant H, De Lafuente V (2014) Introduction to the neurobiology of interval timing, Neurobiology of interval timing. Springer, Berlin, pp 1–13

    Book  Google Scholar 

  • Merchant H, Harrington DL, Meck WH (2013) Neural basis of the perception and estimation of time. Annu Rev Neurosci 36:313–336

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Yin E, Allison BZ, Zhang Y, Chen Y, Dong Y, Wang X, Hu D, Chchocki A, Jin J (2019) An ERP-based BCI with peripheral stimuli: validation with ALS patients. Cognit Neurodyn. https://doi.org/10.1007/s11571-019-09541-0

    Article  Google Scholar 

  • Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, Quest R, McRobbie D, McBride A, Husain M, Kennard C (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18:231–246

    Article  PubMed  Google Scholar 

  • Myers MH, Kozma R (2018) Mesoscopic neuron population modeling of normal/epileptic brain dynamics. Cognit Neurodyn 12:211–223

    Article  Google Scholar 

  • Nakayama K (1997) Localization of the cortical motor area by functional magnetic resonance imaging with gradient echo and echo-planar methods, using clinical 1.5 Tesla MR imaging systems. Osaka City Med J 43:29–48

    CAS  PubMed  Google Scholar 

  • Nobre AC, Sebestyen G, Gitelman D, Mesulam M, Frackowiak R, Frith C (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain J Neurol 120:515–533

    Article  Google Scholar 

  • Okuda J, Fujii T, Ohtake H, Tsukiura T, Yamadori A, Frith CD, Burgess PW (2007) Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time-and event-based prospective memory. Int J Psychophysiol 64:233–246

    Article  PubMed  Google Scholar 

  • Onton J, Makeig S (2006) Information-based modeling of event-related brain dynamics. Prog Brain Res 159:99–120

    Article  PubMed  Google Scholar 

  • Onton JA, Makeig S (2009) High-frequency broadband modulation of electroencephalographic spectra. Front Hum Neurosci 3:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, Staib LH (2006) BioImage Suite: an integrated medical image analysis suite: an update. Insight J 2006:209

    PubMed  PubMed Central  Google Scholar 

  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, Di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rijpkema G, Merx J, Horstink M, Thijssen H (1996) Functional MRI: imaging of motor cortex function. Ned Tijdschr Geneeskd 140:248–254

    PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252

    Article  CAS  PubMed  Google Scholar 

  • Rubia K, Smith A (2004) The neural correlates of cognitive time management: a review. Acta Neurobiol Exp 64(3):329–340

    Google Scholar 

  • Ruby P, Sirigu A, Decety J (2002) Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 38:321–339

    Article  PubMed  Google Scholar 

  • Schiff W, Oldak R (1990) Accuracy of judging time to arrival: effects of modality, trajectory, and gender. J Exp Psychol Hum Percept Perform 16:303

    Article  CAS  PubMed  Google Scholar 

  • Senot P, Baillet S, Renault B, Berthoz A (2008) Cortical dynamics of anticipatory mechanisms in interception: a neuromagnetic study. J Cognit Neurosci 20:1827–1838

    Article  Google Scholar 

  • Sharma N, Jones PS, Carpenter T, Baron J-C (2008) Mapping the involvement of BA 4a and 4p during motor imagery. Neuroimage 41:92–99

    Article  PubMed  Google Scholar 

  • Shergill S, Tracy D, Seal M, Rubia K, McGuire P (2006) Timing of covert articulation: an fMRI study. Neuropsychologia 44:2573–2577

    Article  CAS  PubMed  Google Scholar 

  • Silver MA, Ress D, Heeger DJ (2007) Neural correlates of sustained spatial attention in human early visual cortex. J Neurophysiol 97:229–237

    Article  PubMed  Google Scholar 

  • Simen P, Rivest F, Ludvig EA, Balci F, Killeen P (2013) Timescale invariance in the pacemaker-accumulator family of timing models. Timing Time Percept 1:159–188

    Article  Google Scholar 

  • Smith AT, Cotillon-Williams NM, Williams AL (2006) Attentional modulation in the human visual cortex: the time-course of the BOLD response and its implications. Neuroimage 29:328–334

    Article  PubMed  Google Scholar 

  • Stevens MC, Kiehl KA, Pearlson G, Calhoun VD (2007) Functional neural circuits for mental timekeeping. Hum Brain Mapp 28:394–408

    Article  PubMed  Google Scholar 

  • Sturm W, Schmenk B, Fimm B, Specht K, Weis S, Thron A, Willmes K (2006) Spatial attention: more than intrinsic alerting? Exp Brain Res 171:16–25

    Article  CAS  PubMed  Google Scholar 

  • Subhani AR, Kamel N, Saad MNM, Nandagopal N, Kang K, Malik AS (2018) Mitigation of stress: new treatment alternatives. Cognit Neurodyn 12:1–20

    Article  Google Scholar 

  • Tresilian J (1995) Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Atten Percept Psychophys 57:231–245

    Article  CAS  Google Scholar 

  • Van Der Meer AL, Svantesson M, Van Der Weel FR (2012) Longitudinal study of looming in infants with high-density EEG. Dev Neurosci 34:488–501

    Article  CAS  PubMed  Google Scholar 

  • van der Weel FR, van der Meer AL (2009) Seeing it coming: infants’ brain responses to looming danger. Naturwissenschaften 96:1385

    Article  CAS  PubMed  Google Scholar 

  • Waberski TD, Gobbelé R, Lamberty K, Buchner H, Marshall JC, Fink GR (2008) Timing of visuo-spatial information processing: electrical source imaging related to line bisection judgements. Neuropsychologia 46:1201–1210

    Article  PubMed  Google Scholar 

  • Wiese H, Stude P, Nebel K, de Greiff A, Forsting M, Diener HC, Keidel M (2004) Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Neurosci Lett 371:220–225

    Article  CAS  PubMed  Google Scholar 

  • Yan J-J, Lorv B, Li H, Sun H-J (2011) Visual processing of the impending collision of a looming object: time to collision revisited. J Vis 11:7–7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Golnaz Baghdadi for her comments in analyzing the data and revising the manuscript. We also would like to thank the professor Faubert’s research group at the University of Montreal, especially Jesse Michaels, Jean-Claude Piponnier, and Romain Chaumillon for their great support.

Author information

Authors and Affiliations

Authors

Contributions

AD, DB, and JF designed the experiment. AD undertook the data collection and analyzed the data under the FT’s supervision. AD, FT, and JF interpreted the results. AD drafted the manuscript. FT, JF, and HA revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Farzad Towhidkhah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshi, A., Azarnoush, H., Towhidkhah, F. et al. Brain activity during time to contact estimation: an EEG study. Cogn Neurodyn 14, 155–168 (2020). https://doi.org/10.1007/s11571-019-09563-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09563-8

Keywords

Navigation