Skip to main content
Log in

Facile Synthesis of Mordenite Nanoparticles for Efficient Removal of Pb(II) Ions from Aqueous Media

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The current research presents the fabrication of mordenite nanoparticles via a hydrothermal technique using low-cost mixed organic templates. The utilized templates such as (polyethylene glycol 200 and glycerol), (polyethylene glycol 200 and ethylene glycol), (ethylene glycol and glycerol), and (ethylene glycol, polyethylene glycol 200, and glycerol) were named PEG-GL, PEG-EG, EG-GL, and EG-PEG-Gl, respectively. Characterization of the fabricated nanoparticles was carried using FE-SEM, HR-TEM, FT-IR, XRD, and BET techniques. XRD confirmed that the average crystallite sizes of PEG-GL, PEG-EG, EG-GL, and EG-PEG-Gl were 86.78, 38.75, 98.70, and 45.96, respectively. Also, HR-TEM confirmed that the average diameters of the previous samples were 80.42, 35.50, 92.85, and 44.73, respectively. In addition, FE-SEM confirmed that the previous samples consist of (spherical and cup), (tree leaves and cylindrical rods), (cylindrical rods and spherical), and (spherical and rods) shapes, respectively. Besides, characteristic vibrations of mordenite such as internal symmetric, external symmetric, internal asymmetric, external asymmetric, and bending were detected using FT-IR at 690–705, 780–795, 1025–1030, 1222–1235, and 447–464 cm−1, respectively. The PEG-EG sample efficiently removed Pb(II) ions from aqueous media where 17.40 mg/g is the capacity value. Pore diffusion, intra-particle diffusion, pseudo-first-order, and liquid film diffusion kinetic models successfully described the removal of Pb(II) ions in the view of the kinetic study. In addition, Langmuir isotherm successfully described the removal of Pb(II) ions in the view of the equilibrium study. Moreover, the exothermic and chemisorption properties of the removal of Pb(II) ions were confirmed in the view of the thermodynamic study. The capacity of the PEG-EG sample or % removal of Pb(II) ions was not greatly affected after five desorption-adsorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Naushad, T. Ahamad, B.M. Al-maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J. 330, 1351–1360 (2017)

    CAS  Google Scholar 

  2. S. Iyer, C. Sengupta, A. Velumani, Clinica chimica acta lead toxicity: an overview of prevalence in Indians. Clin. Chim. Acta 451, 161–164 (2015)

    CAS  PubMed  Google Scholar 

  3. N. Sooksawat, M. Meetam, M. Kruatrachue, P. Pokethitiyook, K. Nathalang, Phytoremediation potential of charophytes: bioaccumulation and toxicity studies of cadmium, lead and zinc. J. Environ. Sci. 25, 596–604 (2013)

    CAS  Google Scholar 

  4. A. Kumar, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nagar, Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161 (2005)

    Google Scholar 

  5. M. Barczak, K. Michalak-zwierz, K. Gdula, K. Tyszczuk-rotko, R. Dobrowolski, A. Da, Microporous and mesoporous materials ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. Microporous Mesoporous Mater. 211, 162–173 (2015)

    CAS  Google Scholar 

  6. P. Pal, S.S. Syed, F. Banat, Gelatin-bentonite composite as reusable adsorbent for the removal of lead from aqueous solutions: kinetic and equilibrium studies. J. Water Process Eng. 20, 40–50 (2017)

    Google Scholar 

  7. P. Bhunia, S. Chatterjee, P. Rudra, S. De, Chelating polyacrylonitrile beads for removal of lead and cadmium from wastewater. Sep. Purif. Technol. 193, 202–213 (2018)

    CAS  Google Scholar 

  8. H. Abubakar, M.B. Ahmad, M. Zobir, N. Azowa, A. Musa, T.A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Prot. 109, 97–105 (2017)

    Google Scholar 

  9. O. Charles, S. Al Hamouz, O.S. Akintola, Removal of lead and arsenic ions by a new series of aniline based polyamines. Process. Saf. Environ. Prot. 106, 180–190 (2017)

    Google Scholar 

  10. K. Siwin, Lignin hybrids and their use as functional biosorbents for Pb(II). Chem. Eng. J. 314, 169–181 (2017)

    Google Scholar 

  11. S. Cataldo, G. Lazzara, M. Massaro, N. Muratore, A. Pettignano, S. Riela, Applied clay science functionalized halloysite nanotubes for enhanced removal of lead (II) ions from aqueous solutions. Appl. Clay Sci. 156, 87–95 (2018)

    CAS  Google Scholar 

  12. F.H.M. Luzardo, F.G. Velasco, I.K.S. Correia, P.M.S. Silva, L.C. Salay, Environmental technology & innovation removal of lead ions from water using a resin of mimosa tannin and carbon nanotubes. Environ. Technol. Innov. 7, 219–228 (2017)

    Google Scholar 

  13. O. Charles, S. Al Hamouz, M.K. Estatie, M.A. Morsy, T.A. Saleh, Lead ion removal by novel highly cross-linked Mannich based polymers. J. Taiwan Inst. Chem. Eng. 70, 345–351 (2017)

    Google Scholar 

  14. Ł. Klapiszewski, P. Bartczak, M. Wysokowski, M. Jankowska, K. Kabat, T. Jesionowski, Silica conjugated with kraft lignin and its use as a novel “green” sorbent for hazardous metal ions removal. Chem. Eng. J. 260, 684–693 (2015)

    CAS  Google Scholar 

  15. K. Lee, M. Park, J. Kim, M. Oh, E. Lee, K. Kim, D. Chung, J. Moon, Chemosphere equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution. Chemosphere 150, 765–771 (2016)

    CAS  PubMed  Google Scholar 

  16. S.K. Pitcher, R.C.T. Slade, N.I. Ward, Heavy metal removal from motorway stormwater using zeolites. Sci. Total Environ. 335, 161–166 (2004)

    Google Scholar 

  17. M. Akgu, O. Acar, Y. Yu, Removal of silver(I) from aqueous solutions with clinoptilolite. Microporous Mesoporous Mater. 94, 99–104 (2006)

    Google Scholar 

  18. M.Y. Nassar, E.A. Abdelrahman, Hydrothermal tuning of the morphology and crystallite size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J. Mol. Liq. 242, 364 (2017)

    CAS  Google Scholar 

  19. M.Y. Nassar, E.A. Abdelrahman, A.A. Aly, T.Y. Mohamed, A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J. Mol. Liq. 248, 302–313 (2017)

    CAS  Google Scholar 

  20. X. Li, R. Prins, J. Anton, V. Bokhoven, Synthesis and characterization of mesoporous mordenite. J. Catal. 262, 257–265 (2009)

    CAS  Google Scholar 

  21. S. Samanta, N. Kishor, P. Kumar, A. Bhaumik, Hydrothermally synthesized high silica mordenite as an efficient catalyst in alkylation reaction under liquid phase condition. J. Mol. Catal. A 215, 169–175 (2004)

    CAS  Google Scholar 

  22. M. Mokhtar, T. Mohamed, Synthesis of high silica mordenite nanocrystals using o-phenylenediamine template. Microporous Mesoporous Mater. 84, 84–96 (2005)

    Google Scholar 

  23. L. Zhang, A.N.C. Van Laak, P.E. De Jongh, K.P. De Jong, Synthesis of large mordenite crystals with different aspect ratios. Microporous Mesoporous Mater. 126, 115–124 (2009)

    CAS  Google Scholar 

  24. Y. Yuan, L. Wang, H. Liu, P. Tian, M. Yang, S. Xu, Facile preparation of nanocrystal - assembled hierarchical mordenite zeolites with remarkable catalytic performance. Chin. J. Catal. 36, 1910–1919 (2015)

    CAS  Google Scholar 

  25. A. Lv, H. Xu, H. Wu, Y. Liu, P. Wu, Hydrothermal synthesis of high-silica mordenite by dual-templating method. Microporous Mesoporous Mater. 145, 80–86 (2011)

    CAS  Google Scholar 

  26. A. Jain, M. Agarwal, Journal of water process engineering kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles. J. Water Process Eng. 19, 51–59 (2017)

    Google Scholar 

  27. G. Abimbola, Z. Zaman, P. Adeniyi, Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J. Clean. Prod. 148, 958–968 (2017)

    Google Scholar 

  28. S. Yoon, C. Lee, J. Park, J. Kim, S. Kim, S. Lee, J. Choi, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem. Eng. J. 236, 341–347 (2014)

    CAS  Google Scholar 

  29. M. Abbas, M. Trari, Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process Saf. Environ. 8, 424–436 (2015)

    Google Scholar 

  30. W. Konicki, M. Aleksandrzak, E. Mijowska, Chemical engineering research and design equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 123, 35–49 (2017)

    CAS  Google Scholar 

  31. L.S. Cerovi, D.M. Cokeša, The influence of cationic impurities in silica on its crystallization and point of zero charge. J. Colloid. Interface Sci. 309, 155–159 (2007)

    Google Scholar 

  32. S.S. Talwatkar, Y.S. Tamgadge, A.L. Sunatkari, A.B. Gambhire, G.G. Muley, Amino acids (l -arginine and l -alanine) passivated CdS nanoparticles: synthesis of spherical hierarchical structure and nonlinear optical properties. Solid State Sci. 38, 42–48 (2014)

    CAS  Google Scholar 

  33. M. Devaraj, R. Saravanan, R. Deivasigamani, V.K. Gupta, F. Gracia, S. Jayadevan, Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq. 221, 930–941 (2016)

    CAS  Google Scholar 

  34. S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep. 6, 31641 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C 33, 4725–4731 (2013)

    CAS  Google Scholar 

  36. V.K. Gupta, N. Atar, M.L. Yola, Z. Ustundag, L. Uzun, A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210–217 (2014)

    CAS  PubMed  Google Scholar 

  37. T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci. 371, 101–106 (2012)

    CAS  PubMed  Google Scholar 

  38. V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C 31, 1062–1067 (2011)

    CAS  Google Scholar 

  39. R. Saravanan, V.K. Gupta, T. Prakash, V. Narayanan, A. Stephen, Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J. Mol. Liq. 178, 88–93 (2013)

    CAS  Google Scholar 

  40. T.A. Saleh, V.K. Gupta, Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 362, 337–344 (2011)

    CAS  PubMed  Google Scholar 

  41. T. Wang, P. Zhang, D. Wu, M. Sun, Y. Deng, R.L. Frost, Effective removal of zinc(II) from aqueous solutions by tricalcium aluminate (C3A). J. Colloid Interface Sci. 443, 65–71 (2015)

    CAS  PubMed  Google Scholar 

  42. T.A. Saleh, V.K. Gupta, Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 89, 245–251 (2012)

    CAS  Google Scholar 

  43. U. Maheshwari, B. Mathesan, S. Gupta, Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): kinetic, thermodynamics and mass transfer mechanism. Process Saf. Environ. Prot. 98, 198–210 (2015)

    CAS  Google Scholar 

  44. R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, A. Stephen, ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C 33, 2235–2244 (2013)

    CAS  Google Scholar 

  45. N. Ghasemi, M. Ghasemi, S. Moazeni, P. Ghasemi, N.S. Alharbi, V. Kumar, S. Agarwal, I.V. Burakova, A.G. Tkachev, Zn(II) removal by amino-functionalized magnetic nanoparticles: kinetics, isotherm, and thermodynamic aspects of adsorption. J. Ind. Eng. Chem. 62, 302–310 (2018)

    CAS  Google Scholar 

  46. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C 33, 91–98 (2013)

    CAS  Google Scholar 

  47. Z. Du, T. Zheng, P. Wang, L. Hao, Y. Wang, Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresour. Technol. 201, 41–49 (2016)

    CAS  PubMed  Google Scholar 

  48. R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv. 5, 34645–34651 (2015)

    CAS  Google Scholar 

  49. R. Saravanan, M. Mansoob Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid. Interface Sci. 452, 126–133 (2015)

    CAS  PubMed  Google Scholar 

  50. R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 221, 1029–1033 (2016)

    CAS  Google Scholar 

  51. R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 177, 394–401 (2013)

    CAS  Google Scholar 

  52. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 5, 18438–18450 (2015)

    CAS  Google Scholar 

  53. V.K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ. Eng. Res. 20, 1–18 (2015)

    Google Scholar 

  54. V.K. Gupta, A. Nayak, S. Agarwal, I. Tyagi, Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid Interface Sci. 417, 420–430 (2014)

    CAS  PubMed  Google Scholar 

  55. V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ. Sci. Pollut. Res. Int. 20, 2828–2843 (2013)

    CAS  PubMed  Google Scholar 

  56. H. Khani, M.K. Rofouei, P. Arab, V.K. Gupta, Z. Vafaei, Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J. Hazard Mater. 183, 402–409 (2010)

    CAS  PubMed  Google Scholar 

  57. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J. Colloid Interface Sci. 344, 497–507 (2010)

    CAS  PubMed  Google Scholar 

  58. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J. Colloid Interface Sci. 362, 457–462 (2011)

    CAS  PubMed  Google Scholar 

  59. D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V.K. Gupta, Removal of hazardous dyes-BR12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 284, 687–697 (2016)

    CAS  Google Scholar 

  60. T.A. Saleh, V.K. Gupta, Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv. Colloid Interface Sci. 211, 93–101 (2014)

    CAS  PubMed  Google Scholar 

  61. M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50, 13589–13613 (2011)

    CAS  Google Scholar 

  62. M.E. Argun, S. Dursun, M. Karatas, Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination 249, 519–527 (2009)

    CAS  Google Scholar 

  63. M. Barsbay, S. Tilki, C. Kavakl, O. Güven, Porous cellulosic adsorbent for the removal of Cd(II), Pb(II) and Cu(II) ions from aqueous media. Radiat. Phys. Chem. 142, 70–76 (2018)

    CAS  Google Scholar 

  64. F.E. Okieimen, C.E. Sogbaike, J.E. Ebhoaye, Removal of cadmium and copper ions from aqueous solution with cellulose graft copolymers. Sep. Purif. Technol. 44, 85–89 (2005)

    CAS  Google Scholar 

  65. H. Esmaili, A. Kotobi, S. Sheibani, F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light. Int. J. Miner. Metall. Mater. 25, 244–252 (2018)

    CAS  Google Scholar 

  66. S. Horoz, O. Baytar, O. Sahin, H. Kilicvuran, Photocatalytic degradation of methylene blue with Co alloyed CdZnS nanoparticles. J. Mater. Sci. 29, 1004–1010 (2018)

    CAS  Google Scholar 

  67. H.M. Aly, M.E. Moustafa, M.Y. Nassar, E.A. Abdelrahman, Synthesis and characterization of novel Cu(II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J. Mol. Struct. 1086, 223–231 (2015)

    CAS  Google Scholar 

  68. M.Y. Nassar, H.M. Aly, E.A. Abdelrahman, M.E. Moustafa, Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: a new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1143, 462–471 (2017)

    CAS  Google Scholar 

  69. M.Y. Nassar, H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, Synthesis, Characterization and Biological Activity of New 3-substitued-4-amino-5-hydrazino-1,2,4-triazole Schiff Bases and Their Cu(II) Complexes: a new approach to CuO Nanoparticles for photocatalytic degradation of methylene blue. J. Inorg. Organomet. Polym Mater. 27, 1220–1233 (2017)

    CAS  Google Scholar 

  70. M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 225, 730–740 (2017)

    CAS  Google Scholar 

  71. E.A. Abdelrahman, Synthesis of zeolite nanostructures from waste aluminum cans for ef fi cient removal of malachite green dye from aqueous media. J. Mol. Liq. 253, 72–82 (2018)

    CAS  Google Scholar 

  72. A. Heidari, H. Younesi, Z. Mehraban, H. Heikkinen, Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles. Int. J. Biol. Macromol. 61, 251–263 (2013)

    CAS  PubMed  Google Scholar 

  73. N.P. Raval, P.U. Shah, N.K. Shah, Adsorptive removal of nickel(II) ions from aqueous environment: a review. J. Environ. Manage. 179, 1–20 (2016)

    CAS  PubMed  Google Scholar 

  74. T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Simultaneous removal of Pb(II) and Cr(III) by magnetite nanoparticles using various synthesis conditions. J. Ind. Eng. Chem. 20, 3543–3549 (2014)

    CAS  Google Scholar 

  75. X. Wang, D. Shao, G. Hou, X. Wang, A. Alsaedi, B. Ahmad, Uptake of Pb(II) and U(VI) ions from aqueous solutions by the ZSM-5 zeolite. J. Mol. Liq. 207, 338–342 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab A. Abdelrahman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, E.A., Hegazey, R.M. & Alharbi, A. Facile Synthesis of Mordenite Nanoparticles for Efficient Removal of Pb(II) Ions from Aqueous Media. J Inorg Organomet Polym 30, 1369–1383 (2020). https://doi.org/10.1007/s10904-019-01238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01238-5

Keywords

Navigation