Skip to main content
Log in

Innovative Treatment of Organic Contaminants in Reverse Osmosis Concentrate from Water Reuse: a Mini Review

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Reverse osmosis concentrate (ROC) from wastewater reclamation in water reuse retains concentrated toxic bio-refractory organics, and developing technologies for their removal is essential. This paper reviews innovative treatment technologies for organic contaminants in the ROC, and treatment options for applications are proposed. To adequately manage ROC, volume reduction and quality improvement are important. Forward osmosis (FO) can reduce the ROC volume. Advanced oxidation processes (AOPs) result in degrading organic contaminants and producing biodegradable organics, but the reduction of energy consumption is required. Coagulation is an effective option as a pre-treatment of AOPs and can improve the biodegradability of ROC. Partial use of short-time AOPs can transform high molecular weight organics into relatively biodegradable organics. Among AOPs, a rotating advanced oxidation contactor (RAOC) can be an energy-saving technique for removing bio-refractory organics from ROC using solar light irradiation. Post-biological treatment can significantly save energy and efficiently eliminate biodegradable organics that are produced by AOPs. Microalgae cultivation is also an effective option for resource recovery from ROC. Considering the techniques, an integrated process comprising FO, pre-coagulation, short-time and/or solar-driven AOPs (e.g., RAOC), and post-biological treatment is proposed as an energy-saving and cost-effective technology for ROC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Subramani A, Jacangelo JG. Treatment technologies for reverse osmosis concentrate volume minimization: a review. Sep Purif Technol. 2014;122:472–89. https://doi.org/10.1016/j.seppur.2013.12.004.

    Article  CAS  Google Scholar 

  2. Joo SH, Tansel B. Novel technologies for reverse osmosis concentrate treatment: a review. J Environ Manag. 2015;150:322–35. https://doi.org/10.1016/j.jenvman.2014.10.027.

    Article  CAS  Google Scholar 

  3. Wang Y, Yang Q, Dong J, Huang H. Competitive adsorption of PPCP and humic substances by carbon nanotube membranes: effects of coagulation and PPCP properties. Sci Total Environ. 2018;619–620:352–9. https://doi.org/10.1016/j.scitotenv.2017.11.117.

    Article  CAS  Google Scholar 

  4. Morillo J, Usero J, Rosado D, El Bakouri H, Riaza A, Bernaola F-J. Comparative study of brine management technologies for desalination plants. Desalination. 2014;336:32–49. https://doi.org/10.1016/j.desal.2013.12.038.

    Article  CAS  Google Scholar 

  5. Cumming S. Global markets for reverse osmosis (RO) membranes and components to reach $8.1 billion by 2018: BCC Research, 2014; http://www.prweb.com/pdfdownload/10959343.pdf.

  6. Ramamurthy S. Major reverse osmosis system components for water treatment: the global market, 2017. https://globenewswire.com/news-release/2017/07/17/1047263/0/en/Global-Market-for-R-O-System-Components-to-See-Double-Digit-CAGR-11.html. Accessed 9 July 2019

  7. Kurihara M, Takeuchi H. SWRO-PRO system in “mega-ton water system” for energy reduction and low environmental impact. Water. 2018;10:1–15. https://doi.org/10.3390/w10010048.

    Article  CAS  Google Scholar 

  8. Umar M, Roddick F, Fan L. Assessing the potential of a UV-based AOP for treating high-salinity municipal wastewater reverse osmosis concentrate. Water Sci Technol. 2013;68:1994–9. https://doi.org/10.2166/wst.2013.417.

    Article  CAS  Google Scholar 

  9. Umar M, Roddick F, Fan L. Recent advancements in the treatment of municipal wastewater reverse osmosis concentrate—an overview. Crit Rev Environ Sci Technol. 2015;45:193–248. https://doi.org/10.1080/10643389.2013.852378.

    Article  CAS  Google Scholar 

  10. Birben NC, Uyguner-Demirel CS, Bekbolet M. Organic matrix in reverse osmosis concentrate: composition and treatment alternatives. Curr Org Chem. 2017;21:1084–97. https://doi.org/10.2174/1385272821666170102151901.

    Article  CAS  Google Scholar 

  11. Feiner M, Beggel S, Jaeger N, Geist J. Increased RO concentrate toxicity following application of antiscalants - acute toxicity tests with the amphipods Gammarus pulex and Gammarus roeseli. Environ Pollut. 2015;197:309–12. https://doi.org/10.1016/j.envpol.2014.11.021.

    Article  CAS  Google Scholar 

  12. Rodriguez-Mozaz S, Ricart M, Köck-Schulmeyer M, Guasch H, Bonnineau C, Proia L, et al. Pharmaceuticals and pesticides in reclaimed water: efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. J Hazard Mater. 2015;282:165–73. https://doi.org/10.1016/j.jhazmat.2014.09.015.

    Article  CAS  Google Scholar 

  13. Weng J, Jia H, Wu B, Pan B. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation. Chemosphere. 2018;191:971–8. https://doi.org/10.1016/j.chemosphere.2017.10.054.

    Article  CAS  Google Scholar 

  14. Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag. 2016;182:620–40. https://doi.org/10.1016/j.jenvman.2016.07.049.

    Article  CAS  Google Scholar 

  15. Tamura I, Yasuda Y, Kagota K, Yoneda S, Nakada N, Kumar V, et al. Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams. Ecotoxicol Environ Saf. 2017;144:338–50. https://doi.org/10.1016/j.ecoenv.2017.06.032.

    Article  CAS  Google Scholar 

  16. Benner J, Salhi E, Ternes T, von Gunten U. Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. Water Res. 2008;42:3003–12. https://doi.org/10.1016/j.watres.2008.04.002.

    Article  CAS  Google Scholar 

  17. Westerhoff P, Moon H, Minakata D, Crittenden J. Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities. Water Res. 2009;43:3992–8. https://doi.org/10.1016/j.watres.2009.04.010.

    Article  CAS  Google Scholar 

  18. Pérez G, Fernández-Alba AR, Urtiaga AM, Ortiz I. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment. Water Res. 2010;44:2763–72. https://doi.org/10.1016/j.watres.2010.02.017.

    Article  CAS  Google Scholar 

  19. Abdelmelek SB, Greaves J, Ishida KP, Cooper WJ, Song W. Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. Environ Sci Technol. 2011;45:3665–71. https://doi.org/10.1021/es104287n.

    Article  CAS  Google Scholar 

  20. Justo A, González O, Aceña J, Pérez S, Barceló D, Sans C, et al. Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J Hazard Mater. 2013;263:268–74. https://doi.org/10.1016/j.jhazmat.2013.05.030.

    Article  CAS  Google Scholar 

  21. Wei X, Gu P, Zhang G, Huang J. Occurrence of emerging and priority pollutants in municipal reverse osmosis concentrates. Environ Sci Process Impacts. 2015;17:488–94. https://doi.org/10.1039/C4EM00205A.

    Article  CAS  Google Scholar 

  22. Badia-Fabregat M, Lucas D, Gros M, Rodríguez-Mozaz S, Barceló D, Caminal G, et al. Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. J Hazard Mater. 2015;283:663–71. https://doi.org/10.1016/j.jhazmat.2014.10.007.

    Article  CAS  Google Scholar 

  23. Yang Y, Ok YS, Kim K-H, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ. 2017;596–597:303–20. https://doi.org/10.1016/j.scitotenv.2017.04.102.

    Article  CAS  Google Scholar 

  24. Oulton RL, Kohn T, Cwiertny DM. Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J Environ Monit. 2010;12:1956–78. https://doi.org/10.1039/c0em00068j.

    Article  CAS  Google Scholar 

  25. Awfa D, Ateia M, Fujii M, Johnson MS. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature. Water Res. 2018;142:26–45. https://doi.org/10.1016/j.watres.2018.05.036.

    Article  CAS  Google Scholar 

  26. Chen Y, Vymazal J, Březinová T, Koželuh M, Kule L, Huang J, et al. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci Total Environ. 1660–1669;2016:566–7. https://doi.org/10.1016/j.scitotenv.2016.06.069.

    Article  CAS  Google Scholar 

  27. Kyzas GZ, Fu J, Lazaridis NK, Bikiaris DN, Matis KA. New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J Mol Liq. 2015;209:87–93. https://doi.org/10.1016/j.molliq.2015.05.025.

    Article  CAS  Google Scholar 

  28. Lee CM, Palaniandy P, Dahlan I. Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review. Environ Earth Sci. 2017;76:611. https://doi.org/10.1007/s12665-017-6924-y.

    Article  CAS  Google Scholar 

  29. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol. 2004;68:141–50. https://doi.org/10.1016/j.aquatox.2004.03.014.

    Article  CAS  Google Scholar 

  30. Galus M, Jeyaranjaan J, Smith E, Li H, Metcalfe C, Wilson JY. Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquat Toxicol. 2013;132–133:212–22. https://doi.org/10.1016/j.aquatox.2012.12.016.

    Article  CAS  Google Scholar 

  31. Fent K, Weston AA, Caminada D. Ecotoxicology of human pharmaceuticals. Aquat Toxicol. 2006;76:122–59. https://doi.org/10.1016/j.aquatox.2005.09.009.

    Article  CAS  Google Scholar 

  32. Yahiat S, Fourcade F, Brosillon S, Amrane A. Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment - case of tetracycline and tylosin. Int Biodeterior Biodegrad. 2011;65:997–1003. https://doi.org/10.1016/j.ibiod.2011.07.009.

    Article  CAS  Google Scholar 

  33. Grabert R, Boopathy R, Nathaniel R, LaFleur G. Effect of tetracycline on ammonia and carbon removal by the facultative bacteria in the anaerobic digester of a sewage treatment plant. Bioresour Technol. 2018;267:265–70. https://doi.org/10.1016/j.biortech.2018.07.061.

    Article  CAS  Google Scholar 

  34. Tang F, Hu HY, Wu QY, Tang X, Sun YX, Shi XL, et al. Effects of chemical agent injections on genotoxicity of wastewater in a microfiltration-reverse osmosis membrane process for wastewater reuse. J Hazard Mater. 2013;260:231–7. https://doi.org/10.1016/j.jhazmat.2013.05.035.

    Article  CAS  Google Scholar 

  35. Sun YX, Gao Y, Hu HY, Tang F, Yang Z. Characterization and biotoxicity assessment of dissolved organic matter in RO concentrate from a municipal wastewater reclamation reverse osmosis system. Chemosphere. 2014;117:545–51. https://doi.org/10.1016/j.chemosphere.2014.09.024.

    Article  CAS  Google Scholar 

  36. Jiang N, Shang R, Heijman SGJ, Rietveld LC. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res. 2018;144:145–61. https://doi.org/10.1016/j.watres.2018.07.017.

    Article  CAS  Google Scholar 

  37. Lin L, Jiang W, Xu P. Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: impact of salts and organic matter. Sci Total Environ. 2017;601–602:857–64. https://doi.org/10.1016/j.scitotenv.2017.05.203.

    Article  CAS  Google Scholar 

  38. Wang W. Characterisation and removal of organic matter from a reverse osmosis concentrate by a PAC accumulative countercurrent four-stage adsorption-MF hybrid process. Sep Purif Technol. 2017;189:425–32. https://doi.org/10.1016/j.seppur.2017.08.002.

    Article  CAS  Google Scholar 

  39. Jamil S, Loganathan P, Kazner C, Vigneswaran S. Forward osmosis treatment for volume minimisation of reverse osmosis concentrate from a water reclamation plant and removal of organic micropollutants. Desalination. 2015;372:32–8. https://doi.org/10.1016/j.desal.2015.06.013.

    Article  CAS  Google Scholar 

  40. Jamil S, Jeong S, Vigneswaran S. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant. Sep Purif Technol. 2016;171:182–90. https://doi.org/10.1016/j.seppur.2016.07.036.

    Article  CAS  Google Scholar 

  41. Jamil S, Vigneswaran S, Jeong S. Application of forward osmosis membrane in nanofiltration mode to treat reverse osmosis concentrate from wastewater reclamation plants. Water Sci Technol. 2018;77:1990–7. https://doi.org/10.2166/wst.2018.087.

    Article  CAS  Google Scholar 

  42. Shanmuganathan S, Nguyen TV, Jeong S, Kandasamy J, Vigneswaran S. Submerged membrane - (GAC) adsorption hybrid system in reverse osmosis concentrate treatment. Sep Purif Technol. 2015;146:8–14. https://doi.org/10.1016/j.seppur.2015.03.017.

    Article  CAS  Google Scholar 

  43. Shanmuganathan S, Loganathan P, Kazner C, Johir MAH, Vigneswaran S. Submerged membrane filtration adsorption hybrid system for the removal of organic micropollutants from a water reclamation plant reverse osmosis concentrate. Desalination. 2017;401:134–41. https://doi.org/10.1016/j.desal.2016.07.048.

    Article  CAS  Google Scholar 

  44. Zhang Y, Prigent B, Geißen SU. Adsorption and regenerative oxidation of trichlorophenol with synthetic zeolite: ozone dosage and its influence on adsorption performance. Chemosphere. 2016;154:132–7. https://doi.org/10.1016/j.chemosphere.2016.03.079.

    Article  CAS  Google Scholar 

  45. Fukahori S, Fujiwara T. Modeling of sulfonamide antibiotic removal by TiO2/high-silica zeolite HSZ-385 composite. J Hazard Mater. 2014;272:1–9. https://doi.org/10.1016/j.jhazmat.2014.02.028.

    Article  CAS  Google Scholar 

  46. Mendret J, Azaïs A, Petit E, Brosillon S, Cazals G. Ozonation as a pretreatment process for nanofiltration brines: monitoring of transformation products and toxicity evaluation. J Hazard Mater. 2017;338:381–93. https://doi.org/10.1016/j.jhazmat.2017.05.045.

    Article  CAS  Google Scholar 

  47. Li A, Chen Z, Wu QY, Huang MH, Liu ZY, Chen P, et al. Study on the removal of benzisothiazolinone biocide and its toxicity: the effectiveness of ozonation. Chem Eng J. 2016;300:376–83. https://doi.org/10.1016/j.cej.2016.04.021.

    Article  CAS  Google Scholar 

  48. Azaïs A, Mendret J, Petit E, Brosillon S. Influence of volumetric reduction factor during ozonation of nanofiltration concentrates for wastewater reuse. Chemosphere. 2016;165:497–506. https://doi.org/10.1016/j.chemosphere.2016.09.071.

    Article  CAS  Google Scholar 

  49. Wang H, Wang YN, Li X, Sun Y, Wu H, Chen D. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Manag. 2016;56:271–9. https://doi.org/10.1016/j.wasman.2016.07.040.

    Article  CAS  Google Scholar 

  50. Zhou T, Lim T-T, Chin S-S, Fane AG. Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment. Chem Eng J. 2011;166:932–9. https://doi.org/10.1016/j.cej.2010.11.078.

    Article  CAS  Google Scholar 

  51. Joss A, Baenninger C, Foa P, Koepke S, Krauss M, McArdell CS, et al. Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2 addition as scaling control. Water Res. 2011;45:6141–51. https://doi.org/10.1016/j.watres.2011.09.011.

    Article  CAS  Google Scholar 

  52. Acero JL, Benitez FJ, Real FJ, Teva F. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem Eng J. 2016;289:48–58. https://doi.org/10.1016/j.cej.2015.12.082.

    Article  CAS  Google Scholar 

  53. Hermosilla D, Merayo N, Ordóñez R, Blanco Á. Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Manag. 2012;32:1236–43. https://doi.org/10.1016/j.wasman.2011.12.011.

    Article  CAS  Google Scholar 

  54. Ren Y, Yuan Y, Lai B, Zhou Y, Wang J. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air). J Hazard Mater. 2016;302:36–44. https://doi.org/10.1016/j.jhazmat.2015.09.025.

    Article  CAS  Google Scholar 

  55. Aouni A, Altinay AD, Ilhan F, Koseoglu-Imer DY, Avsar Y, Hafiane A, et al. The applicability of combined physico-chemical processes for treatment and reuse of synthetic textile reverse osmosis concentrate. Desalin Water Treat. 2018;111:111–24. https://doi.org/10.5004/dwt.2018.22244.

    Article  CAS  Google Scholar 

  56. Dialynas E, Mantzavinos D, Diamadopoulos E. Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater. Water Res. 2008;42:4603–8. https://doi.org/10.1016/j.watres.2008.08.008.

    Article  CAS  Google Scholar 

  57. Cemre Birben N, Bekbolet M. Role of emerging contaminants on solar photocatalytic treatment of organic matter in reverse osmosis concentrate. Catal Today. 2019;326:101–7. https://doi.org/10.1016/j.cattod.2018.10.048.

    Article  CAS  Google Scholar 

  58. Goedecke C, Sojref R, Nguyen TY, Piechotta C. Immobilization of photocatalytically active TiO2 nanopowder by high shear granulation. Powder Technol. 2017;318:465–70. https://doi.org/10.1016/j.powtec.2017.06.025.

    Article  CAS  Google Scholar 

  59. Haynes VN, Ward JE, Russell BJ, Agrios AG. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—current knowledge and suggestions for future research. Aquat Toxicol. 2017;185:138–48. https://doi.org/10.1016/j.aquatox.2017.02.012.

    Article  CAS  Google Scholar 

  60. Xiang Q, Fukahori S, Yamashita N, Tanaka H, Fujiwara T. Removal of crotamiton from reverse osmosis concentrate by a TiO2/zeolite composite sheet. Appl Sci. 2017;7:778. https://doi.org/10.3390/app7080778.

    Article  CAS  Google Scholar 

  61. Umar M, Roddick F, Fan L. Effect of coagulation on treatment of municipal wastewater reverse osmosis concentrate by UVC/H2O2. J Hazard Mater. 2014;266:10–8. https://doi.org/10.1016/j.jhazmat.2013.12.005.

    Article  CAS  Google Scholar 

  62. Umar M, Roddick F, Fan L. Comparison of coagulation efficiency of aluminium and ferric-based coagulants as pre-treatment for UVC/H2O2 treatment of wastewater RO concentrate. Chem Eng J. 2016;284:841–9. https://doi.org/10.1016/j.cej.2015.08.109.

    Article  CAS  Google Scholar 

  63. Lu J, Fan L, Roddick FA. Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation. Chemosphere. 2013;93:683–8. https://doi.org/10.1016/j.chemosphere.2013.06.008.

    Article  CAS  Google Scholar 

  64. Pradhan S, Fan L, Roddick FA, Shahsavari E, Ball AS. Impact of salinity on organic matter and nitrogen removal from a municipal wastewater RO concentrate using biologically activated carbon coupled with UV/H2O2. Water Res. 2016;94:103–10. https://doi.org/10.1016/j.watres.2016.02.046.

    Article  CAS  Google Scholar 

  65. Lütke Eversloh C, Schulz M, Wagner M, Ternes TA. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes. Water Res. 2015;72:293–304. https://doi.org/10.1016/j.watres.2014.12.021.

    Article  CAS  Google Scholar 

  66. Weng M, Pei J. Electrochemical oxidation of reverse osmosis concentrate using a novel electrode: parameter optimization and kinetics study. Desalination. 2016;399:21–8. https://doi.org/10.1016/j.desal.2016.08.002.

    Article  CAS  Google Scholar 

  67. Maharaja P, Boopathy R, Karthikeyan S, Mahesh M, Komal AS, Gupta VK, et al. Advanced oxidation of catechol in reverse osmosis concentrate generated in leather wastewater by Cu–graphite electrode. Int J Environ Sci Technol. 2016;13:2143–52. https://doi.org/10.1007/s13762-016-1044-x.

    Article  CAS  Google Scholar 

  68. Barazesh JM, Prasse C, Sedlak DL. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ Sci Technol. 2016;50:10143–52. https://doi.org/10.1021/acs.est.6b02232.

    Article  CAS  Google Scholar 

  69. Lan Y, Coetsier C, Causserand C, Groenen SK. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim Acta. 2017;231:309–18. https://doi.org/10.1016/j.electacta.2017.01.160.

    Article  CAS  Google Scholar 

  70. Wang J, Zhang T, Mei Y, Pan B. Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP). Chemosphere. 2018;201:621–6. https://doi.org/10.1016/j.chemosphere.2018.03.051.

    Article  CAS  Google Scholar 

  71. Wohlmuth da Silva S, Venzke C, Bitencourt Welter J, Schneider D, Zoppas Ferreira J, Siqueira Rodrigues M, et al. Electrooxidation using Nb/BDD as post-treatment of a reverse osmosis concentrate in the petrochemical industry. Int J Environ Res Public Health. 2019;16:816. https://doi.org/10.3390/ijerph16050816.

    Article  CAS  Google Scholar 

  72. Kazner C, Jamil S, Phuntsho SK, Shon H, Wintgens T, Vigneswaran S. Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control. Water Sci Technol. 2014;69:2431–7. https://doi.org/10.2166/wst.2014.138.

    Article  CAS  Google Scholar 

  73. Maltos RA, Regnery J, Almaraz N, Fox S, Schutter M, Cath TJ, et al. Produced water impact on membrane integrity during extended pilot testing of forward osmosis – reverse osmosis treatment. Desalination. 2018;440:99–110. https://doi.org/10.1016/j.desal.2018.02.029.

    Article  CAS  Google Scholar 

  74. Kim Y, Woo YC, Phuntsho S, Nghiem LD, Shon HK, Hong S. Evaluation of fertilizer-drawn forward osmosis for coal seam gas reverse osmosis brine treatment and sustainable agricultural reuse. J Membr Sci. 2017;537:22–31. https://doi.org/10.1016/j.memsci.2017.05.032.

    Article  CAS  Google Scholar 

  75. Xu P, Cath TY, Robertson AP, Reinhard M, Leckie JO, Drewes JE. Critical review of desalination concentrate management, treatment and beneficial use. Environ Eng Sci. 2013;30:502–14. https://doi.org/10.1089/ees.2012.0348.

    Article  CAS  Google Scholar 

  76. Tong T, Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol. 2016;50:6846–55. https://doi.org/10.1021/acs.est.6b01000.

    Article  CAS  Google Scholar 

  77. Arola K, Van der Bruggen B, Mänttäri M, Kallioinen M. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: a review. Crit Rev Environ Sci Technol. 2019:1–68. https://doi.org/10.1080/10643389.2019.1594519.

    Article  CAS  Google Scholar 

  78. Jia S, Han Y, Zhuang H, Han H, Li K. Simultaneous removal of organic matter and salt ions from coal gasification wastewater RO concentrate and microorganisms succession in a MBR. Bioresour Technol. 2017;241:517–24. https://doi.org/10.1016/j.biortech.2017.05.158.

    Article  CAS  Google Scholar 

  79. Yao S, Chen L, Guan D, Zhang Z, Tian X, Wang A, et al. On-site nutrient recovery and removal from source-separated urine by phosphorus precipitation and short-cut nitrification-denitrification. Chemosphere. 2017;175:210–8. https://doi.org/10.1016/j.chemosphere.2017.02.062.

    Article  CAS  Google Scholar 

  80. Justo A, González O, Sans C, Esplugas S. BAC filtration to mitigate micropollutants and EfOM content in reclamation reverse osmosis brines. Chem Eng J. 2015;279:589–96. https://doi.org/10.1016/j.cej.2015.05.018.

    Article  CAS  Google Scholar 

  81. Llorca M, Badia-Fabregat M, Rodríguez-Mozaz S, Caminal G, Vicent T, Barceló D. Fungal treatment for the removal of endocrine disrupting compounds from reverse osmosis concentrate: identification and monitoring of transformation products of benzotriazoles. Chemosphere. 2017;184:1054–70. https://doi.org/10.1016/j.chemosphere.2017.06.053.

    Article  CAS  Google Scholar 

  82. Badia-Fabregat M, Lucas D, Tuomivirta T, Fritze H, Pennanen T, Rodríguez-Mozaz S, et al. Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Sci Total Environ. 2017;579:366–77. https://doi.org/10.1016/j.scitotenv.2016.11.088.

    Article  CAS  Google Scholar 

  83. Miranda AF, Ramkumar N, Andriotis C, Höltkemeier T, Yasmin A, Rochfort S, et al. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels. 2017;10:1–23. https://doi.org/10.1186/s13068-017-0798-9.

    Article  CAS  Google Scholar 

  84. Ikehata K, Zhao Y, Kulkarni HV, Li Y, Snyder SA, Ishida KP, et al. Water recovery from advanced water purification facility reverse osmosis concentrate by photobiological treatment followed by secondary reverse osmosis. Environ Sci Technol. 2018;52:8588–95. https://doi.org/10.1021/acs.est.8b00951.

    Article  CAS  Google Scholar 

  85. Volk CJ, Lechevallier MW. Effects of conventional treatment on AOC and BDOC levels. J Am Water Works Assoc. 2002;94:112–23. https://doi.org/10.1002/j.1551-8833.2002.tb09494.x.

    Article  CAS  Google Scholar 

  86. Long Y, Xu J, Shen D, Du Y, Feng H. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere. 2017;167:512–9. https://doi.org/10.1016/j.chemosphere.2016.10.016.

    Article  CAS  Google Scholar 

  87. Ho JS, Ma Z, Qin J, Sim SH, Toh CS. Inline coagulation-ultrafiltration as the pretreatment for reverse osmosis brine treatment and recovery. Desalination. 2015;365:242–9. https://doi.org/10.1016/j.desal.2015.03.018.

    Article  CAS  Google Scholar 

  88. Shi J, Dang Y, Qu D, Sun D. Effective treatment of reverse osmosis concentrate from incineration leachate using direct contact membrane distillation coupled with a NaOH/PAM pre-treatment process. Chemosphere. 2019;220:195–203. https://doi.org/10.1016/j.chemosphere.2018.12.110.

    Article  CAS  Google Scholar 

  89. Yuan Z, He C, Shi Q, Xu C, Li Z, Wang C, et al. Molecular insights into the transformation of dissolved organic matter in landfill leachate concentrate during biodegradation and coagulation processes using ESI FT-ICR MS. Environ Sci Technol. 2017;51:8110–8. https://doi.org/10.1021/acs.est.7b02194.

    Article  CAS  Google Scholar 

  90. Qian F, He M, Wu J, Yu H, Duan L. Insight into removal of dissolved organic matter in post pharmaceutical wastewater by coagulation-UV/H2O2. J Environ Sci (China). 2019;76:329–38. https://doi.org/10.1016/j.jes.2018.05.025.

    Article  Google Scholar 

  91. Huang J, Chen J, Xie Z, Xu X. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide. Environ Technol (United Kingdom). 2015;36:1001–7. https://doi.org/10.1080/09593330.2014.971882.

    Article  CAS  Google Scholar 

  92. Shah TM, Ramaswami S, Behrendt J, Otterpohl R. Simultaneous removal of organics and ammonium-nitrogen from reverse osmosis concentrate of mature landfill leachate. J Water Process Eng. 2017;19:126–32. https://doi.org/10.1016/j.jwpe.2017.07.024.

    Article  Google Scholar 

  93. Fukahori S, Fujiwara T, Ito R, Funamizu N. Photocatalytic decomposition of crotamiton over aqueous TiO2 suspensions: determination of intermediates and the reaction pathway. Chemosphere. 2012;89:213–20. https://doi.org/10.1016/j.chemosphere.2012.04.018.

    Article  CAS  Google Scholar 

  94. Fukahori S, Fujiwara T. Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2. J Environ Manag. 2015;157:103–10. https://doi.org/10.1016/j.jenvman.2015.04.002.

    Article  CAS  Google Scholar 

  95. Fukahori S, Fujiwara T, Ito R, Funamizu N. pH-dependent adsorption of sulfa drugs on high silica zeolite: modeling and kinetic study. Desalination. 2011;275:237–42. https://doi.org/10.1016/j.desal.2011.03.006.

    Article  CAS  Google Scholar 

  96. Fukahori S, Fujiwara T, Funamizu N, Matsukawa K, Ito R. Adsorptive removal of sulfonamide antibiotics in livestock urine using the high-silica zeolite HSZ-385. Water Sci Technol. 2013;67:319–25. https://doi.org/10.2166/wst.2012.513.

    Article  CAS  Google Scholar 

  97. Chen X, Fujiwara T, Fukahori S, Ishigaki T. Factors affecting the adsorptive removal of bisphenol A in landfill leachate by high silica Y-type zeolite. Environ Sci Pollut Res. 2015;22:2788–99. https://doi.org/10.1007/s11356-014-3522-3.

    Article  CAS  Google Scholar 

  98. Nomura Y, Fukahori S, Fukada H, Fujiwara T. Removal behaviors of sulfamonomethoxine and its degradation intermediates in fresh aquaculture wastewater using zeolite/TiO2 composites. J Hazard Mater. 2017;340:427–34. https://doi.org/10.1016/j.jhazmat.2017.07.034.

    Article  CAS  Google Scholar 

  99. Xiang Q, Fukahori S, Nomura Y, Fujiwara T. Removal of crotamiton and its degradation intermediates from secondary effluent using TiO2–zeolite composites. Water Sci Technol. 2018;77:788–99. https://doi.org/10.2166/wst.2017.578.

    Article  CAS  Google Scholar 

  100. Ito M, Fukahori S, Fujiwara T. Adsorptive removal and photocatalytic decomposition of sulfamethazine in secondary effluent using TiO2-zeolite composites. Environ Sci Pollut Res. 2014;21:834–42. https://doi.org/10.1007/s11356-013-1707-9.

    Article  CAS  Google Scholar 

  101. Fukahori S, Ito M, Fujiwara T. Removal mechanism of sulfamethazine and its intermediates from water by a rotating advanced oxidation contactor equipped with TiO2–high-silica zeolite composite sheets. Environ Sci Pollut Res. 2018;25:29017–25. https://doi.org/10.1007/s11356-018-2909-y.

    Article  CAS  Google Scholar 

  102. Nomura Y, Fukahori S, Fujiwara T. Removal of sulfamonomethoxine and its transformation byproducts from fresh aquaculture wastewater by a rotating advanced oxidation contactor equipped with zeolite/TiO2 composite sheets (in preparation). J Hazard Mater 2019.

  103. Fukahori S, Fujiwara T, Ito R, Funamizu N. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process. Water Sci Technol. 2015;72:238–44. https://doi.org/10.2166/wst.2015.182.

    Article  CAS  Google Scholar 

  104. Nomura Y, Fukahori S, Fujiwara T. Removal of 1,4-dioxane from landfill leachate by a rotating advanced oxidation contactor equipped with activated carbon/TiO2 composite sheets (under review). J Hazard Mater. 2019.

  105. Wang X-X, Wu Y-H, Zhang T-Y, Xu X-Q, Dao G-H, Hu H-Y. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Water Res. 2016;94:215–24. https://doi.org/10.1016/j.watres.2016.02.062.

    Article  CAS  Google Scholar 

  106. Maeng SK, You SH, Nam JY, Ryu H, Timmes TC, Kim HC. The growth of Scenedesmus quadricauda in RO concentrate and the impacts on refractory organic matter, Escherichia coli, and trace organic compounds. Water Res. 2018;134:292–300. https://doi.org/10.1016/j.watres.2018.01.029.

    Article  CAS  Google Scholar 

  107. Maeng SK, Khan W, Park JW, Han I, Yang HS, Song KG, et al. Treatment of highly saline RO concentrate using Scenedesmus quadricauda for enhanced removal of refractory organic matter. Desalination. 2018;430:128–35. https://doi.org/10.1016/j.desal.2017.12.056.

    Article  CAS  Google Scholar 

  108. Chakraborti RK, Bays JS, Ng T, Balderrama L, Kirsch T. A pilot study of a subsurface-flow constructed wetland treating membrane concentrate produced from reclaimed water. Water Sci Technol. 2015;72:260–8. https://doi.org/10.2166/wst.2015.201.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dennis Murphy of The United Graduate School of Agricultural Sciences, Ehime University for editing a draft of this manuscript.

Funding

This work was financially supported by JSPS KAKENHI Grant Number 16H02372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Fujiwara.

Ethics declarations

Conflict of Interest

On behalf of all the authors, Taku Fujiwara states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Nomura, Y., Fukahori, S. et al. Innovative Treatment of Organic Contaminants in Reverse Osmosis Concentrate from Water Reuse: a Mini Review. Curr Pollution Rep 5, 294–307 (2019). https://doi.org/10.1007/s40726-019-00119-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-019-00119-2

Keywords

Navigation