Skip to main content
Log in

On verified numerical computations in convex programming

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This survey contains recent developments for computing verified results of convex constrained optimization problems, with emphasis on applications. Especially, we consider the computation of verified error bounds for non-smooth convex conic optimization in the framework of functional analysis, for linear programming, and for semidefinite programming. A discussion of important problem transformations to special types of convex problems and convex relaxations is included. The latter are important for handling and for reliability issues in global robust and combinatorial optimization. Some remarks on numerical experiences, including also large-scale and ill-posed problems, and software for verified computations concludes this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Herzberger, Introduction to Interval Computations. Academic Press, New York, 1983.

    MATH  Google Scholar 

  2. F. Alizadeh and D. Glodfarb, Second-order cone programming. Math. Program.,95 (2003), 3–51.

    Article  MATH  MathSciNet  Google Scholar 

  3. E.D. Andersen, C. Roos and T. Terlaky, A primal-dual interior-point method for conic quadratic optimization. Math. Programming,95 (2003), 249–277.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Beeck, Linear programming with inexact data. Technical Report 7830, Abteilung Mathematik, TU München, 1978.

    Google Scholar 

  5. A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust semidefinite programming. Handbook of Semidefinite Programming, H. Wolkowicz, R. Saigal and L. Vandenberghe (eds.), Kluwer Academic Publishers, 2000.

  6. A. Ben-Tal and A. Nemirovski, Robust convex optimization. Math. Operations Res.,23 (1998), 769–805.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA, 2001.

    MATH  Google Scholar 

  8. S.J. Benson and Y. Ye, DSDP3: Dual scaling algorithm for general positive semidefinite programming. Technical Report Preprint ANL/MCS-P851-1000, Argonne National Labs, 2001.

  9. M. Berz et al., COSY Infinity. http://www.bt.pa.msu.edu/index_files/cosy.htm.

  10. G.D. Birkhoff, Lattice Theory, revised edition. Am. Math. Soc. Colloquium Publications, Vol. 25, Am. Math. Soc., New York, 1948.

  11. B. Borchers, CSDP, A C library for semidefinite programming. Optimization Methods and Software,11 (1999), 613–623.

    Article  MathSciNet  Google Scholar 

  12. B. Borchers, SDPLIB 1.2, a library of semidefinite programming test problems. Optimization Methods and Software,11 (1999), 683–690.

    Article  MathSciNet  Google Scholar 

  13. N. Bourbaki, Éléments de mathématique. XIII. 1 part: Les structures fondamentales de l’analyse, Livre VI: Intégration, Actualités scientifique et industrielles, 1952.

  14. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

  15. S. Burer and R.D.C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Programming,95 (2003), 329–357.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Burer, R.D.C. Monteiro and Y. Zhang, Solving a class of semidefinite programs via nonlinear programming. Math. Programming,93 (2002), 97–122.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Chaykin, Verified Semidefinite Programming: Applications and the Software Package verified SDP. Ph.D. thesis, Technische Universität Hamburg-Harburg, 2009.

  18. E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Dordrecht: Kluwer Academic Publishers, 2002.

    MATH  Google Scholar 

  19. L. El Ghaoui, F. Oustry and H. Lebret, Robust Solutions to Uncertain Semidefinite Programs. SIAM J. Optim.,9 (1998), 33–52.

    Article  MATH  Google Scholar 

  20. R.M. Freund, F. Ordóñez and K. Toh, Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems. Math. Programming,109 (2007), 445–475.

    Article  MATH  Google Scholar 

  21. E.R. Hansen, Global Optimization Using Interval Analysis. Marcel Dekker, New York, 1992.

    MATH  Google Scholar 

  22. C. Helmberg, SBmethoda C++ implementation of the spectral bundle method. Technical Report, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2000, Manual to Version 1.1, ZIB-Report ZR 00-35, http://www.mathematik.uni-kl.de/helmberg/SBmethod/.

  23. C. Helmberg, Semidefinite programming for combinatorial optimization (Habilitationsschrift). Technical Report ZIB ZR-00-34, Konrad-Zuse-Zentrum Berlin, TU Berlin, 2000.

  24. C. Helmberg and K.C. Kiwiel, A spectral bundle method with bounds. Math. Programming,93 (2002), 173–194.

    Article  MATH  MathSciNet  Google Scholar 

  25. ILOG CPLEX 7.1, User’s Manual. ILOG, France, 2001.

  26. C. Jansson, A self-validating method for solving linear programming problems with interval input data, Computing Suppl.,6 (1988), 33–45.

    MathSciNet  Google Scholar 

  27. C. Jansson, A rigorous lower bound for the optimal value of convex optimization problems. J. Global Optimization,28 (2004), 121–137.

    Article  MATH  MathSciNet  Google Scholar 

  28. C. Jansson, Rigorous lower and upper bounds in linear programming. SIAM J. Optimization (SIOPT),14 (2004), 914–935.

    Article  MATH  MathSciNet  Google Scholar 

  29. C. Jansson, VSDP: A MATLAB software package for verified semidefinite programming. NOLTA, 2006, 327–330.

  30. C. Jansson, VSDP: Verified Semidefinite Programming, User’s Guide. 2006, http://www.BetaVersion0.1. optimization-online.org/DB_HTML/2006/12/1547.html.

  31. C. Jansson, Guaranteed accuracy for conic programming problems in vector lattices. 2007, arXiv:0707.4366v1, http://arxiv.org/abs/0707.4366v1.

  32. C. Jansson, D. Chaykin and C. Keil, Rigorous error bounds for the optimal value in semidefinite programming. SIAM Journal on Numerical Analysis,46 (2007), 180–200, http://link.aip.org/link/?SNA/46/180/1.

    Article  MathSciNet  Google Scholar 

  33. R.B. Kearfott, GlobSol. http://interval.louisiana.edu.

  34. R.B. Kearfott, On proving existence of feasible points in equality constrained optimization problems. Math. Program.,83 (1998), 89–100.

    MathSciNet  Google Scholar 

  35. R.B. Kearfott, On proving existence of feasible points in equality constrained optimization problems. Preprint, Department of Mathematics, Univ. of Southwestern Louisiana, U.S.L. Box 4-1010, Lafayette, La 70504, 1994.

    Google Scholar 

  36. R.B. Kearfott, Rigorous Global Search: Continuous Problems. Kluwer Academic Publisher, Dordrecht, 1996.

    MATH  Google Scholar 

  37. C. Keil, Verified linear programming — a comparison. Submitted, 2008, http://www.optimization-online.org/DB_HTML/2008/06/2007.html.

  38. C. Keil, Lurupa — rigorous error bounds in linear programming. Algebraic and Numerical Algorithms and Computer-Assisted Proofs, B. Buchberger, S. Oishi, M. Plum and S.M. Rump (eds.), Dagstuhl Seminar Proceedings, No. 05391. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006, http://drops.dagstuhl.de/opus/volltexte/2006/445.

    Google Scholar 

  39. C. Keil and C. Jansson, Computational experience with rigorous error bounds for the Netlib linear programming library. Reliable Computing,12 (2006), 303–321. http://www.optimization-online.org/DB_HTML/2004/12/1018.html.

    Article  MATH  MathSciNet  Google Scholar 

  40. R. Krawczyk, Fehlerabschätzung bei linearer Optimierung, Interval Mathematics, K. Nickel (ed.), Lecture Notes in Computer Science, Vol. 29, Springer-Verlag, Berlin, 1975, 215–222.

    Google Scholar 

  41. M. Laurent and S. Poljak, On a positive semidefinite relaxation of the cut polytope. Linear Algebra and Its Applications (LAA),223/224 (1995), 439–461.

    Article  MathSciNet  Google Scholar 

  42. J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB. Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

  43. H.D. Mittelmann, An independent benchmarking of SDP and SOCP solvers. Math. Programming Ser. B,95 (2003), 407–430.

    Article  MATH  MathSciNet  Google Scholar 

  44. R.E. Moore, Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.

    MATH  Google Scholar 

  45. A. Nemirovskii, Lectures on Modern Convex Optimization. 2003.

  46. Y. Nesterov, Long-step strategies in interior-point primal-dual methods. Math. Programming,76 (1997), 47–94.

    MathSciNet  Google Scholar 

  47. Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, 1994.

    MATH  Google Scholar 

  48. Y.E. Nesterov and M.J. Todd, Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res.,22 (1997), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  49. NETLIB Linear Programming Library. http://www.netlib.org/lp.

  50. A. Neumaier, Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1990.

  51. A. Neumaier, Introduction to Numerical Analysis. Cambridge University Press, 2001.

  52. A. Neumaier, Complete search in continuous global optimization and constraint satisfaction. Acta Numerica, Vol. 13, A. Iserles (eds.), Cambridge University Press, 2004, 271–369.

  53. A. Neumaier and O. Shcherbina, Safe bounds in linear and mixed-integer programming. Mathematical Programming, Ser. A,99 (2004), 283–296.

    Article  MATH  MathSciNet  Google Scholar 

  54. J. von Neumann and H.H. Goldstine, Numerical inverting of matrices of high order. Bull. Amer. Math. Soc.,53 (1947), 1021–1099.

    Article  MATH  MathSciNet  Google Scholar 

  55. S. Oishi and S.M. Rump, Fast verification of solutions of matrix equations. Numer. Math.,90 (2002), 755–773.

    Article  MATH  MathSciNet  Google Scholar 

  56. S. Oishi, K. Tanabe, T. Ogita and S.M. Rump, Convergence of Rump’s method for inverting arbitrarily ill-conditioned matrices. J. Comput. Appl. Math.,205 (2007), 533–544.

    Article  MATH  MathSciNet  Google Scholar 

  57. F. Ordóñez and R.M. Freund, Computational experience and the explanatory value of condition measures for linear optimization. SIAM J. Optimization (SIOPT),14 (2003), 307–333.

    Article  MATH  Google Scholar 

  58. A.L. Peressini, Ordered Topological Vector Spaces. Harper and Row, 1967.

  59. J. Renegar, Some perturbation theory for linear programming. Mathematical Programming,65 (1994), 79–91.

    Article  MathSciNet  Google Scholar 

  60. J. Renegar, Linear programming, complexity theory, and elementary functional analysis. Mathematical Programming,70 (1995), 279–351, citeseer.ist.psu.edu/renegar95linear.html.

    MathSciNet  Google Scholar 

  61. S.M. Rump, Solving algebraic problems with high accuracy (Habilitationsschrift), A New Approach to Scientific Computation, U.W. Kulisch and W.L. Miranker (eds.), Academic Press, New York, 1983, 51–120.

    Google Scholar 

  62. S.M. Rump, Validated solution of large linear systems. Validation Numerics: Theory and Applications, R. Albrecht, G. Alefeld and H.J. Stetter (eds.), Computing Supplementum, Vol. 9, Springer, 1993, 191–212.

  63. S.M. Rump, INTLAB—interval laboratory, a Matlab toolbox for verified computations, Version 5.1, 2005.

  64. S.M. Rump, Error bounds for extremely ill-conditioned problems. Proceedings of 2006 International Symposium on Nonlinear Theory and Its Applications, Bologna, Italy, September 11–14, 2006.

  65. S.M. Rump, INTLAB—interval laboratory, the Matlab toolbox for verified computations, Version 5.3, 2006.

  66. S.M. Rump and T. Ogita, Super-fast validated solution of linear systems. Special issue on scientific computing, computer arithmetic, and validated numerics (SCAN 2004), Journal of Computational and Applied Mathematics (JCAM),199 (2006), 199–206.

    Article  MathSciNet  Google Scholar 

  67. H.H. Schaefer, Banach lattices and positive operators. Springer, 1974.

  68. J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software,11 (1999), 625–653.

    Article  MathSciNet  Google Scholar 

  69. J.F. Sturm, Central region method. High Performance Optimization, J.B.G. Frenk, C. Roos, T. Terlaky and S. Zhang (eds.), Kluwer Academic Publishers, 2000, 157–194.

  70. L. Tuncel, Generalization of primaldual interior-point methods to convex optimization problems in conic form. Found. Comput. Math.,1 (2001), 229–254.

    MATH  MathSciNet  Google Scholar 

  71. A.M. Turing, Rounding-off errors in matrix processes. Quarterly J. of Mechanics & App. Maths.,1 (1948), 287–308.

    Article  MATH  MathSciNet  Google Scholar 

  72. R.H. Tütüncü, K.C. Toh and M.J. Todd, Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program.,95 (2003), 189–217.

    Article  MATH  MathSciNet  Google Scholar 

  73. P. Van Hentenryck, P. Michel and Y. Deville, Numerica: A Modelling Language for Global Optimization. MIT Press, Cambridge, 1997.

    Google Scholar 

  74. H. Wolkowicz, Semidefinite and Cone Programming Bibliography, Comments. http://orion.uwaterloo.ca/~hwolkowi/henry/book/fronthandbk.d/sdpbibliog.pdf.

  75. H. Wolkowicz, R. Saigal and L. Vandenberghe (eds.), Handbook of Semidefinite Programming. International Series in Operations Research and Management Science, Vol. 27, Kluwer Academic Publishers, Boston, MA, 2000.

    Google Scholar 

  76. M. Yamashita, K. Fujisawa and M. Kojima, Implementation and evaluation of SDPA 6.0. Optimization Methods and Software,18 (2003), 491–505.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jansson.

About this article

Cite this article

Jansson, C. On verified numerical computations in convex programming. Japan J. Indust. Appl. Math. 26, 337–363 (2009). https://doi.org/10.1007/BF03186539

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03186539

Key words

Navigation