Skip to main content
Log in

Kinetic study of copolymerized PMIA with ether moiety under air pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Copolymerized poly(m-phenylene isophthalamide) (co-PMIA) was synthesized by solution polycondensation using m-phenylenediamine and isophthaloyl dichloride and 3,4′-oxydianiline (3,4′-ODA). This paper described the preparation and characterization of the copolymers from various contents 3,4′-ODA to afford co-PMIA with ideal high molecular mass. The copolymer showed excellent thermal stability with the glass transition temperature of 267 °C and the onset decomposition temperature (5% mass loss) of 445 °C. The thermal degradation of co-PMIA was measured with various thermal analytical techniques; the pyrolysis products were obtained and analyzed under air atmosphere. The possible thermal decomposition mechanism of co-PMIA was discussed. The present pyrolysis was investigated using TG under air atmosphere at four different heating rates (5–20 °C min−1). Three different kinetic methods, the iso-conversional Ozawa–Flynn–Wall and Kissinger and Crane methods were applied on TG data of co-PMIA to calculate the kinetic parameters including activation energy, pre-exponential factor and reaction order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Islam MT, Aimone F, Ferri A, Rovero G. Use of N-methylformanilide as swelling agent for meta-aramid fibers dyeing: kinetics and equilibrium adsorption of Basic Blue 41. Dyes Pigments. 2015;113(2):554–61.

    CAS  Google Scholar 

  2. Trigo-López M, Miguel-Ortega Á, Vallejos S, Muñoz A, Izquierdo D, Colina Á, et al. Intrinsically colored wholly aromatic polyamides (aramids). Dyes Pigments. 2015;122:177–83.

    Google Scholar 

  3. García JM, García FC, Serna F, Peña JLDL. High-performance aromatic polyamides. Prog Polym Sci. 2010;35(5):623–86.

    Google Scholar 

  4. Zhong L, Wang T, Liu L, Du W, Wang S. Ultra-fine SiO2 nanofilament-based PMIA: a double network membrane for efficient filtration of PM particles. Sep Purif Technol. 2018;202:357–64.

    CAS  Google Scholar 

  5. Sandra CDS, Fernandes Loguercio L, Silva Corrêa D, Ramos Nunes M, Antônio Villetti M, Irene TSG. Interfacial properties and thermal stability of modified poly(m-phenylene isophthalamide) thin films. Surf Interface Anal. 2013;45(4):837–43.

    Google Scholar 

  6. Horrocks AR. Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stabil. 2011;96(3):377–92.

    CAS  Google Scholar 

  7. Trigo-López M, Barrio-Manso JL, Serna F, García FC, García JM. Crosslinked aromatic polyamides: a further step in high-performance materials. Macromol Chem Phys. 2013;214(19):2223–31.

    Google Scholar 

  8. Jadhav JY. Structure, stability and degradation of organosilicon aramids. Polym Degrad Stabil. 1985;13(4):327–36.

    CAS  Google Scholar 

  9. Higashihara T, Zhang C, Tsukuda A, Ochi T, Ueda M. Direct synthesis and melt-drawing property of aramids by bulk polycondensation of isophthalic acid with m-phenylenediamine and 3, 4′-oxydianiline. J Appl Polym Sci. 2012;124(5):4398–402.

    CAS  Google Scholar 

  10. Chen L, Hu Z, Liu XX, Zhaofeng L. Properties and structures of terephthalyl chloride (TPC) modified meta-aramid copolymers. J Macromol Sci A. 2006;43(11):1741–8.

    CAS  Google Scholar 

  11. Yu S, Mizoguchi K, Ueda M. Synthesis of aramids by polycondensation of aromatic dicarboxylic acids with aromatic diamines containing ether linkages. Polym J. 2008;40(8):680–1.

    Google Scholar 

  12. Han SY, Jaung JY. Acid dyeing properties of meta-aramid fiber pretreated with PEO 45-MeDMA derived from [2-(methacryloyloxy)ethyl] trimethylammonium chloride. Fiber Polym. 2009;10(4):461–5.

    CAS  Google Scholar 

  13. Preston J, Hofferbert WL. A solvent-dyeing process for aramid fibers. Text Res J. 1979;49(5):283–7.

    CAS  Google Scholar 

  14. Nechwatal A, Rossbach V. The carrier effect in the m-aramid fiber/cationic dye/benzyl alcohol system. Text Res J. 1999;69(9):635–41.

    CAS  Google Scholar 

  15. Safabakhsh B, Khosravi A, Gharanjig K, Kowsari E, Khorassani M, Tafaghodi S. Synthesis of a novel fluorescent coloured copolymer based on 4-butylthio-1,8-naphthalimide. Color Technol. 2012;128(3):218–22.

    CAS  Google Scholar 

  16. Riordan JE, Blair HS. Synthesis and characterization of inherently coloured azo polyamides. Polym. 1979;20(2):196–202.

    CAS  Google Scholar 

  17. Fu C, Gu L. Structures and properties of easily dyeable copolyesters and their fibers respectively modified by three kinds of diols. J Appl Polym Sci. 2013;128(6):3964–73.

    CAS  Google Scholar 

  18. Wei G, Wang L, Chen G, Gu L. Synthesis and characterization of poly(ethylene-co -trimethylene terephthalate)s. J Appl Polym Sci. 2006;100(2):1511–21.

    CAS  Google Scholar 

  19. Derombise G, Van Schoors LV, Davies P. Degradation of Technora aramid fibres in alkaline and neutral environments. Polym Degrad Stabil. 2009;94(10):1615–20.

    CAS  Google Scholar 

  20. Villar-Rodil S, MartíNez-Alonso A, Tascón J. Studies on pyrolysis of Nomex polyaramid fibers. J Anal Appl Pyrol. 2001;58(00):105–15.

    Google Scholar 

  21. Villarrodil S, Paredes JI, Martínezalonso A, Tascón JMD. Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of Nomex aramid fibers. Chem Mater. 2012;13(11):4297–304.

    Google Scholar 

  22. Kajiyama M. Preparation and properties of aramid copolymers derived from 3,4′-ODA, 4,4′-ODA,IPC and TPC. J Adhesion. 2006;59(1–4):101–9.

    Google Scholar 

  23. Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol. 2017;251:63–74.

    PubMed  Google Scholar 

  24. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156(4):182–8.

    CAS  PubMed  Google Scholar 

  25. Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrol. 2013;99(1):170–7.

    CAS  Google Scholar 

  26. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel. 2012;95(1):305–11.

    CAS  Google Scholar 

  27. Sharma R, Sheth PN, Gujrathi AM. Kinetic modeling and simulation: pyrolysis of Jatropha residue de-oiled cake. Renewe Energ. 2016;86:554–62.

    CAS  Google Scholar 

  28. Sadhukhan AK, Gupta P, Saha RK. Modelling of pyrolysis of large wood particles. Bioresour Technol. 2009;100(12):3134–9.

    CAS  PubMed  Google Scholar 

  29. Shi L, Liu Q, Guo X, Wu W, Liu Z. Pyrolysis behavior and bonding information of coal-A TGA study. Fuel Process Technol. 2013;108(6):125–32.

    CAS  Google Scholar 

  30. Dong KS, Sang SP, Yong TK, Hwang J, Yu TU. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrol. 2011;92(1):209–16.

    Google Scholar 

  31. Arora S, Kumar M, Dubey GP. Thermal decomposition kinetics of rice husk: activation energy with dynamic thermogravimetric analysis. J Energy Inst. 2016;82(3):138–43.

    Google Scholar 

  32. Regnier N, Guibe C. Methodology for multistage degradation of polyimide polymer. Polym Degrad Stabil. 1997;55(2):165–72.

    CAS  Google Scholar 

  33. Neto HS, Matos JDR. Compatibility and decomposition kinetics studies of prednicarbate alone and associated with glyceryl stearate. J Therm Anal Calorim. 2011;103(1):393–9.

    Google Scholar 

  34. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207(4994):290–1.

    CAS  Google Scholar 

  35. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    CAS  Google Scholar 

  36. Skrovanek DJ, Painter PC, Coleman MM. Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules. 1986;19(3):699–705.

    CAS  Google Scholar 

  37. Yu S, Zhang C, Higashihara T, Ueda M. Synthesis of aramids by bulk polycondensation of aromatic dicarboxylic acids with 4, 4′-oxydianiline. Polym Chem. 2012;3(8):1978–81.

    Google Scholar 

  38. Chen JC, Liu YT, Leu CM, Liao HY, Lee WC, Lee TM. Synthesis and properties of organosoluble polyimides derived from 2, 2′-dibromo and 2, 2′,6,6′-tetrabromo-4,4′-oxydianilines. J Appl Polym Sci. 2010;117(2):1144–55.

    CAS  Google Scholar 

  39. Villar-Rodil S, Paredes JI, Martínez-Alonso A, Tascón J. Combining thermal analysis with other techniques to monitor the decomposition of poly(m-phenylene isophthalamide). J Therm Anal Calorim. 2002;70(1):37–43.

    CAS  Google Scholar 

  40. Wu C, You J, Wang X. Thermal decomposition mechanism and kinetics of gemcitabine. J Anal Appl Pyrol. 2018;130:118–26.

    CAS  Google Scholar 

  41. Chou WJ, Wang CC, Chen CY. Thermal behaviors of polyimide with plasma-modified carbon nanotubes. Polym Degrad Stabil. 2008;93(3):745–52.

    CAS  Google Scholar 

  42. Mckendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83(1):37–46.

    CAS  PubMed  Google Scholar 

  43. Aguirresarobe RH, Irusta L, Fernandez-Berridi MJ. Application of TGA/FTIR to the study of the thermal degradation mechanism of silanized poly(ether-urethanes). Polym Degrad Stabil. 2012;97(9):1671–9.

    CAS  Google Scholar 

  44. Akhter Z, Bashir MA, Khan MSU. Synthesis, characterization and thermal degradation kinetics of ferrocene-containing aramids. Appl Organomet Chem. 2010;19(7):848–53.

    Google Scholar 

Download references

Acknowledgements

This research was supported by “the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2019012)”. The authors also thank the Shanghai International S&T Cooperation Fund (16160731302) and the Natural Science Foundation of China (51473031) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junrong Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, X., Yu, J. et al. Kinetic study of copolymerized PMIA with ether moiety under air pyrolysis. J Therm Anal Calorim 140, 283–293 (2020). https://doi.org/10.1007/s10973-019-08809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08809-1

Keywords

Navigation