Skip to main content
Log in

Health Effects of Chromium and Its Concentrations in Cereal Foods Together with Sulfur

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

The common cellular process of chromium and similar toxic elements are oxidative stress caused by reactive oxygen species, DNA damage, apoptosis, and cell death. Their cations have strong affinity for sulfur found in proteins, and thus they can deactivate the enzymes and stop or alter metabolic processes. In this study, absorption and toxicity of Cr were discussed taking into consider its solubility in water as well as chemical species and way of intake into body. Further, concentrations of total Cr and sulfur in cereal foods consumed commonly in Turkey were evaluated by a physiological approach. Among the studied 29 cereal samples, Cr concentrations in 17 of them (60%) were found to be higher (p < 0.5) than the MCL of 0.30 mg kg−1. Total estimated daily intake (∑EDI) from cereal foods was found to be 0.0330 mg/day/prs, that is, 66% of lower band and 16% of upper band of the RDA. Among other total mean values, ∑EWI = 0.231 (max. EWI:1.4 mg/week/prs), ∑EED = 1.8 × 10−4, and HICr(III) = ∑HQ = 1.2 × 10−4 (lower than 1) reveal that the probability of an individual developing cancer over a lifetime as a result of exposure to Cr through consumption of rice was higher (p < 0.5) than acceptable risk levels (EED > 10−4). This evaluation is based on that chromium found in food and supplements is Cr(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Modified from Ref. (Salnikov and Zhitkovich 2008))

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1:222–228

    Article  CAS  Google Scholar 

  • Cabrera C, Lloris F, Gimenez R et al (2003) Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Sci Total Environ 308:1–14

    Article  CAS  Google Scholar 

  • Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4(7):619–627

    Article  CAS  Google Scholar 

  • Coetzee JJ, Bansal N, Chirwa EMN (2018) Chromium in environment, its toxic effect from chromite mining and ferrochrome industries, and its possible bioremediation. In press, https://doi.org/10.1007/s12403-018-0284-z

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  • Di Bella G, Naccari C, Bua GD et al (2016) Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int J Food Sci Nutr 67(3):239–248

    Article  Google Scholar 

  • Ding M, Shi X (2002) Molecular mechanisms of Cr(VI)-induced carcinogenesis. Mol Cell Biochem 234–235:293–300

    Article  Google Scholar 

  • EFSA (2014) Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J 12(3):3595

    Google Scholar 

  • EPA (2010) U.S. Environmental Protection Agency Washington, DC, EPA/635/R-10/004A

  • IARC (1997) International Agency for the Research on Cancer (IARC). Chromium, nickel and welding, vol 49. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC, Lyon

  • Khlifi R, Olmedo P, Gil F et al (2013) Arsenic, cadmium, chromium and nickel in cancerous and healthy tissues from patients with head and neck cancer. Sci Total Environ 452:58–67

    Article  Google Scholar 

  • Lee JC, Son YO et al (2012) Oxidative stress and metal carcinogenesis. Free Radic Biol Med 53:742–757

    Article  CAS  Google Scholar 

  • Marín S, Pardo O, Báguena R et al (2017) Dietary exposure to trace elements and health risk assessment in the region of Valencia, Spain: a total diet study. Food Addit Contam 34(2):228–240

    Google Scholar 

  • Mulware SJ (2013) Trace elements and carcinogenicity: a subject in review. Biotech 3:85–96

    Google Scholar 

  • O’Brien TJ, Ceryak S, Patierno SR (2003) Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res-Fundam Mol Mech Mutag 533(1–2):3–36

    Article  Google Scholar 

  • Pirsaheb M, Fattahi N, Sharafi K et al (2016) Essential and toxic heavy metals in cereals and agricultural products marketed in Kermanshah, Iran, and human health risk assessment. Food Addit Contamin 9(1):15–20

    Article  CAS  Google Scholar 

  • Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44

    Article  Google Scholar 

  • Sasso AF, Schlosser PM (2015) An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach. Toxicol Appl Pharmacol 287(3):293–298

    Article  CAS  Google Scholar 

  • Thompson CM, Proctor DM, Suh M et al (2013) Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Crit Rev Toxicol 43(3):244–274

    Article  CAS  Google Scholar 

  • Trumbo P, Yates AA, Schlicker S et al (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J The American Dietetic Assoc 101(3):294–301

    Article  CAS  Google Scholar 

  • USEPA (IRIS) (2007) Integrated Risk Information System-Database. Philadelphia PA, Washington, DC

  • Welling R, Beaumont JJ, Petersen SJ et al (2015) ChromiumVI and stomach cancer: a meta-analysis of the current epidemiological evidence. Occup Environ Med 72:151–159

    Article  Google Scholar 

  • WHO (2011) World Health Organization, Evaluation of certain food additives and contaminants. (Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No 960, Geneva, Switzerland

  • Yadav P, Singh B, Garg VK et al (2017) Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Hum Ecol Risk Assess 23(1):14–27

    Article  CAS  Google Scholar 

  • Yaman M (2003) Determination of Cr(VI) and Cr(III) in water using activated carbon-atomic absorption spectrometry. Revue Romaine De Chimie 48(8):597–600

    CAS  Google Scholar 

  • Yaman M, Yaman IH (2014) Variations in toxic metal levels of two fish species, Pomatomus saltatrix and Dicentrarchus labrax, and risk estimation for children. Spectrosc Spectral Anal 34(2):300–307

    CAS  Google Scholar 

  • Yaman B, Yaman M (2017) Seasonal variations in concentrations of toxic trace metals in deep-sea fishes, identified with STAT-AAS and ICP-AES. J Elem 22(1):127–142

    Google Scholar 

  • Yaman M, Bal T, Yaman IH (2013) Metal levels in Trachurus trachurus and Cyprinus carpio in Turkey. Food Add Contam 6(4):301–306

    Article  CAS  Google Scholar 

  • Yaman M, Karaaslan NM, Yaman IH (2014) Seasonal variations in toxic metal levels of two fish species, Mugil cephalus and Mullus barbatus and estimation of risk for children. Bull Environ Contam Toxicol 93(3):344–349

    Article  CAS  Google Scholar 

  • Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks to Dr. Mehmet Yaman from Firat University for his assistance in chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Yaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaman, B. Health Effects of Chromium and Its Concentrations in Cereal Foods Together with Sulfur. Expo Health 12, 153–161 (2020). https://doi.org/10.1007/s12403-019-00298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-019-00298-9

Keywords

Navigation