Skip to main content
Log in

Closed-Form Formulae for European Options Under Three-Factor Models

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we derive new closed-form valuations to European options under three-factor hybrid models that include stochastic interest rates and stochastic volatility and incorporate a nonzero covariance structure between factors. We make novel use of the empirically proven 3/2 stochastic volatility model with a time-dependent drift in which we are free to choose the moving reversion target. This model has been shown by many authors to empirically outperform other volatility models in maximising model fit. We also improve the valuation of European options under the Heston volatility and Cox, Ingersoll, Ross interest rate model, recently published in the literature, by replacing open-form infinite series with closed-form analytic expressions. For completeness, we also add a fuller covariance structure in this setting and detail closed-form valuations for options. The inclusion of nonzero covariances amongst the factors can significantly improve option pricing by allowing for a wider variety of market behaviour. The solutions are derived by firstly formulating the price of a European call option in terms of the corresponding characteristic function of the underlying price and then determining a partial differential equation for the characteristic function. By including empirically proven models into our analysis, the options formulae could provide more realistic prices for investors and practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. While the methods of Sects. 2 and 3 lead to the same governing equations, it is insightful to see both approaches. The reader is referred to the text by Brigo and Mercurio [10].

  2. In the paper by He and Zhu [23], there is a typographical error in their expression for B(tT).

  3. In Sect. 4, where we consider the full correlation structure, we also discuss series solutions.

  4. See, for example, the works of Flannery and James [17] and Ballester et al. [16].

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1965)

    MATH  Google Scholar 

  2. Abudy, M., Izhakian, Y.: Pricing stock options with stochastic interest rate. Int. J. Portf. Anal. Manag. 1(3), 250–277 (2013). https://doi.org/10.1504/IJPAM.2013.054408

    Article  Google Scholar 

  3. Alam, M.M., Uddin, G.: Relationship between interest rate and stock price: empirical evidence from developed and developing countries. Int. J. Bus. Manag. 4(3), 43–51 (2009). https://ssrn.com/abstract=2941281

  4. Andreasen, J.: Closed-form pricing of FX options under stochastic rates and volatility. In: Global Derivatives Conference, ICBI (2006)

  5. Antonov, A., Arneguy, M., Audet, N.: Markovian projection to a displaced volatility Heston model. In: 2008 Working Paper (2008). http://ssrn.com/abstract=1106223

  6. Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J. Financ. 52(5), 2003–2049 (1997). https://doi.org/10.1111/j.1540-6261.1997.tb02749.x

    Article  Google Scholar 

  7. Bakshi, G., Ju, N., Ou-Yang, H.: Estimation of continuous-time models with an application to equity volatility dynamics. J. Financ. Econ. 82(1), 227–249 (2006). https://doi.org/10.1016/j.jfineco.2005.09.005

    Article  Google Scholar 

  8. Bailey, W., Stulz, R.M.: The pricing of stock index options in a general equilibrium model. J. Financ. Quant. Anal. 24(1), 1–12 (1989). http://www.jstor.org/stable/2330744

  9. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973). https://www.journals.uchicago.edu/doi/10.1086/260062

  10. Brigo, D., Mercurio, F.: Interest Rate Models—Theory and Practice: With Smile, Inflation and Credit. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math. Financ. 13(3), 345–382 (2003). https://doi.org/10.1111/1467-9965.00020

    Article  MATH  Google Scholar 

  12. Carr, P., Wu, L.: What type of process underlies options? A simple robust test. J. Financ. 58(6), 2581–2610 (2003). https://doi.org/10.1046/j.1540-6261.2003.00616.x

    Article  Google Scholar 

  13. Chacko, G., Viceira, L.M.: Spectral GMM estimation of continuous-time processes. J. Econ. 116, 259–292 (2003). https://doi.org/10.1016/S0304-4076(03)00109-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Christoffersen, P., Jacobs, K., Mimouni, K.: Volatility dynamics for the S&P500: evidence from realized volatility, daily returns and option prices. Rev. Financ. Stud. 23(8), 3141–3189 (2010). https://doi.org/10.1093/rfs/hhq032

    Article  Google Scholar 

  15. Drimus, G.G.: Options on realized variance by transform methods: a non-affine stochastic volatility model. Quant. Financ. 12(11), 1679–1694 (2012). https://doi.org/10.1080/14697688.2011.565789

    Article  MathSciNet  MATH  Google Scholar 

  16. Ballester, L., Ferrer, R., Gonzlez, C.: Linear and nonlinear interest rate sensitivity of Spanish banks. Span. Rev. Financ. Econ. 9(2), 35–48 (2011). https://doi.org/10.1016/j.srfe.2011.09.002

    Article  Google Scholar 

  17. Flannery, M., James, C.M.: The effect of interest rate changes on the common stock returns of financial institutions. J. Financ. 39(4), 1141–1153 (1984). https://EconPapers.repec.org/RePEc:bla:jfinan:v:39:y:1984:i:4:p:1141-53

  18. Giese, A.: On the pricing of auto-callable equity securities in the presence of stochastic volatility and stochastic interest rates. Presentation (2006). https://www.scribd.com/document/273887110/Auto-Call-Able-s

  19. Goard, J.: New solutions to the bond-pricing equation via Lie’s classical method. Math. Comput. Model. 32, 299–313 (2000). https://doi.org/10.1016/S0895-7177(00)00136-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Grzelak, L.A., Oosterlee, C.W.: On the Heston model with stochastic interest rates. SIAM J. Financ. Math. 2(1), 255–286 (2011). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1382902

  21. Grzelak, L.A., Oosterlee, C.W., Van Weeren, S.: Extension of stochastic volatility equity models with the Hull–White interest rate process. Quan. Financ. 12(1), 89–105 (2012). https://doi.org/10.2139/ssrn.1344959

    Article  MathSciNet  MATH  Google Scholar 

  22. Haowen, F.: European option pricing formula under stochastic interest rate. Prog. Appl. Math. 4(1), 14–21 (2012). https://doi.org/10.3968/j.pam.1925252820120401.Z0619

    Article  Google Scholar 

  23. He, X.-J., Zhu, S.-P.: A closed-form pricing formula for European options under the Heston model with stochastic interest rate. J. Comput. Appl. Math. 1, 11 (2017). https://doi.org/10.1016/j.cam.2017.12.011

    Article  Google Scholar 

  24. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993). https://doi.org/10.1093/rfs/6.2.327

    Article  MathSciNet  MATH  Google Scholar 

  25. Hull, J., White, A.: The pricing of options on assets with stochastic volatility. J. Financ. 42, 281–300 (1987). https://doi.org/10.1111/j.1540-6261.1987.tb02568.x

    Article  Google Scholar 

  26. Hunter, C., Picot, G.: Hybrid derivatives: financial engines of the future. In: Nicholson, L. (ed.) The Euromoney Derivatives and Risk Management Handbook 2005/2006. Euromoney Books, London (2006)

    Google Scholar 

  27. Jones, C.: The dynamics of stochastic volatility: evidence from underlying and options markets. J. Econ. 116, 181–224 (2003). https://doi.org/10.1016/S0304-4076(03)00107-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, Y.-J.: Option pricing under stochastic interest rates: an empirical investigation. Asia Pac. Financ. Mark. 9(1), 23–44 (2002). https://doi.org/10.1023/A:1021155301176

    Article  MATH  Google Scholar 

  29. Lewis, A.L.: Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach (2000)

    MATH  Google Scholar 

  30. Maplesoft, Maple: 12 Users Manual. Maplesoft, Waterloo (2008)

    Google Scholar 

  31. Rindell, K.: Pricing of index options when interest rates are stochastic: an empirical test. J. Bank. Financ. 19(5), 785–802 (1995). https://doi.org/10.1016/0378-4266(94)00087-J

    Article  Google Scholar 

  32. Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein–Uhlenbeck process: an extension. Rev. Financ. 3(1), 23–46 (1999). https://doi.org/10.1023/A:1009803506170

    Article  MATH  Google Scholar 

  33. Scott, L.O.: Option pricing when the variance changes randomly: theory, estimation and an application. J. Financ. Quant. Anal. 22, 419–438 (1987). https://doi.org/10.2307/2330793

    Article  Google Scholar 

  34. Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytical approach. Rev. Financ. Stud. 4, 727–752 (1991). https://scholar.harvard.edu/stein/publications/stock-price-distributions-stochastic-volatility-analytic-approach

  35. Van Haastrecht, A., Lord, R., Pelssser, A., Schrager, D.F.: Pricing long-maturity equity and FX derivatives with stochastic interest rates and stochastic volatility. Insur. Math. Econ. 45, 436–448 (2009). https://www.researchgate.net/publication/228163489_Pricing_Long-Maturity_Equity_and_FX_Derivatives_with_Stochastic_Interest_Rates_and_Stochastic_Volatility

  36. Wiggins, J.: Option values under stochastic volatility: theory and empirical estimates. J. Financ. Econ. 19, 351–372 (1987). https://doi.org/10.1016/0304-405X(87)90009-2

    Article  Google Scholar 

  37. Wilmott, P.: Derivatives: the theory and practice of financial engineering. Wiley, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Goard.

Appendices

Appendix A: Series Solution (4.4)

The coefficients of the first few terms of \(E= \sum _{n=0}^{\infty } \psi _n \tau ^n\) as in Eq. (4.4) with \(c= {d-(a_7\rho \sigma -k)\over \sigma ^2}, \ a_1 = -\alpha +a_7\gamma \eta , \ a_5 = \gamma \chi a_7,\ a_2 = a_7(1-{\gamma ^2\over 2}) -{\phi ^2\gamma ^2\over 2}, \ \beta _4 = \gamma \eta a_7, \ a_7 = j\phi \), found using the mathematics package Maple (see [30]) are listed below:

$$\begin{aligned} \psi _1= & {} a_2 \\ \psi _2= & {} -{1\over 2(-1+g)}(-a_5cd+a_1a_2-a_1a_2g-a_1+a_1g-\alpha +\alpha g) \\ \psi _3= & {} {1\over 6(-1+g)^2}\left[ 2 \chi \eta c d-a_1 a_5 c d-2 a_1^2 a_2 g\right. \\&+\,a_1^2 a_2 g^2+4 \eta ^2 a_2 g-2 \eta ^2 a_2 g^2-2 \eta ^2 a_2^2 g+\eta ^2 a_2^2 g^2-a_5 c d^2 \\&+\,a_1^2 a_2-a_1^2+2 a_1^2 g-a_1^2 g^2+\eta ^2 a_2^2-2 \alpha ^2 g+\alpha ^2 g^2-2 \eta ^2 a_2\\&\left. +\,\alpha ^2+\chi ^2 c^2 d^2-2 \eta a_2 \chi c d-2 \chi \eta c d g+a_1 a_5 c d g-a_5 c d^2 g+2 \eta a_2 \chi c d g\right] \end{aligned}$$
$$\begin{aligned} \psi _4= & {} -{1\over 48(-1+g)^3}\left[ 6 \eta ^2 \alpha +6 \chi \eta c d^2-2 a_5 c d^3 g^2\right. \\&-\,18 \eta ^2 \alpha g+18 \eta ^2 \alpha g^2-6 \eta ^2 \alpha g^3-3 \alpha ^3-3 m^2 a_1 g \\&+\,3 m^2 a_1 g^2-m^2 a_1 g^3-3 m^2 \alpha g+3 m^2 \alpha g^2-m^2 \alpha g^3+3 a_1 \alpha ^2 g-3 a_1 \alpha ^2 g^2\\&+\,a_1 \alpha ^2 g^3-2 a_5 c d^3+9 \alpha ^3 g-9 \alpha ^3 g^2+3 \alpha ^3 g^3+m^2 a_1+m^2 \alpha -a_1 \alpha ^2+6 \chi ^2 c^2 d^3\\&+\,6 \chi ^2 c^2 d^3 g-6 \chi \eta c d^2 g^2-6 \eta a_2 \chi c d^2-8 a_5 c d^3 g+6 \eta a_2 \chi c d^2 g^2-18 \eta ^2 a_1 g\\&+\,18 \eta ^2 a_1 g^2-6 \eta ^2 a_1 g^3+6 \eta ^2 a_1+2 a_1^3 a_2+6 a_1^3 g-6 a_1^3 g^2+2 a_1^3 g^3-2 a_1^3 -20 a_1 \chi \eta c d g\\&+\,10 a_1 g^2 \chi \eta c d+12 a_5 c d \eta ^2 a_2 g-6 a_5 c d \eta ^2 a_2 g^2-6 a_5 c^2 d^2 \chi \eta g\\&-\,10 a_1 a_2 \chi \eta c d-12 \eta ^2 a_5 c d g+6 \eta ^2 a_5 c d g^2-6 a_5 c d \eta ^2 a_2+10 a_1 \chi \eta c d-2 a_1 g \chi ^2 c^2 d^2\\&+\,2 a_1 g^2 a_5 c d^2+6 a_5 c^2 d^2 \chi \eta +4 a_5 c d a_1^2 g-2 a_5 c d a_1^2 g^2\\&+\,6 \eta ^2 a_5 c d+16 a_1 g^3 \eta ^2 a_2-2 a_5 c d a_1^2-24 a_1 a_2^2 \eta ^2 g\\&+\,24 a_1 a_2^2 \eta ^2 g^2-8 a_1 a_2^2 g^3 \eta ^2+48 a_1 \eta ^2 a_2 g-48 a_1 \eta ^2 a_2 g^2-2 a_1 a_5 c d^2\\&+\,2 a_1 \chi ^2 c^2 d^2+20 a_1 a_2 \chi \eta c d g-10 a_1 a_2 g^2 \chi \eta c d-6 a_1^3 a_2 g+6 a_1^3 a_2 g^2\\&\left. +\,8 a_1 a_2^2 \eta ^2-2 a_1^3 a_2 g^3-16 a_1 \eta ^2 a_2 \right] . \end{aligned}$$

Appendix B: Series Representations

The series for the functions WPQ and R as given in (4.9)–(4.11) with \(c= {d-(a_7\rho \sigma -k)\over \sigma ^2}, \ a_1 = -\alpha +a_7\gamma \eta , \ a_5 = \gamma \chi a_7,\ a_2 = a_7(1-{\gamma ^2\over 2}) -{\phi ^2\gamma ^2\over 2}, \ \beta _4 = \gamma \eta a_7, \ a_7 = j\phi \), are given by

$$\begin{aligned} W(\tau )=\sum _{i=0}^{\infty } w_i \tau ^i, \ P(\tau )=\sum _{i=0}^{\infty } p_i \tau ^i,\ Q(\tau )=\sum _{i=0}^{\infty } q_i \tau ^i,\ R(\tau )=\sum _{i=0}^{\infty } r_i \tau ^i, \end{aligned}$$

where

$$\begin{aligned} w_i= & {} {1\over i!}[2g(-m+\alpha )d^i+g^2(m-\alpha )(2d)^i\\&+\,(\alpha +m)m^i -2g(m+\alpha )(m+d)^i+g^2(m+\alpha )(m+2d)^i];\\ w_0= & {} w_0+m-\alpha ;\\ p_i= & {} {1\over i!}\left\{ \left[ -4 a_1 g-\chi ^2 c^2 m-a_5 c m-2 \eta \chi c-2 a_2 m g+2 a_2 \alpha g\right. \right. \\&\left. +\,a_5 c \alpha +\chi ^2 c^2 \alpha -2 \eta \chi c g-a_5 c g m+a_5 c g \alpha -4 \alpha g\right] d^i\\&+\, \left[ 2 a_1 g^2-a_2 \alpha g^2-(1/2) \chi ^2 c^2 \alpha +(1/2) \chi ^2 c^2 m+a_2 m g^2\right. \\&\left. +\,2 \eta \chi c g+a_5 c g m-a_5 c g \alpha +2 \alpha g^2\right] (2d)^i\\&+\,\left[ a_2 m+a_2 \alpha +(1/2) \chi ^2 c^2 m+a_5 c m-2 \eta \chi c\right. \\&\left. +\,a_5 c \alpha +(1/2) \chi ^2 c^2 \alpha -2 a_1-2 \alpha \right] m^i\\&+\,\left[ 4 a_1 g-\chi ^2 c^2 m-a_5 c m+2 \eta \chi c-2 a_2 m g-2 a_2 \alpha g-a_5 c \alpha \right. \\&\left. -\,\chi ^2 c^2 \alpha +2 \eta \chi c g-a_5 c g m-a_5 c g \alpha +4 \alpha g\right] (m+d)^i \\&+\,\left. \left[ -2 a_1 g^2+(1/2) \chi ^2 c^2 m+a_2 m g^2+a_2 \alpha g^2+(1/2) \chi ^2 c^2 \alpha \right. \right. \\&\left. \left. -\,2 \eta \chi c g+a_5 c g m+a_5 c g \alpha -2 \alpha g^2\right] (m+2d)^i \right\} ; \\ p_0= & {} p_0+\left[ 2 \alpha +a_5 c m+(1/2) \chi ^2 c^2 m+a_2 m+2 a_1\right. \\&\left. -\,a_5 c \alpha -(1/2) \chi ^2 c^2 \alpha +2 \eta \chi c-a_2 \alpha \right] ; \\ q_i= & {} {1\over i!}\left\{ \left[ -4 \eta ^2 g-2 a_1 m g+2 a_1 \alpha g-\eta \chi c m g\right. \right. \\&\left. \left. +\,\eta \chi c \alpha g-\eta \chi c m+\eta \chi c \alpha \right] d^i \right. \\&+\,\left[ -g \left( -a_1 m g+a_1 \alpha g-2 \eta ^2 g\right. \right. \\&\left. \left. +\,\eta \chi c \alpha -\eta \chi c m\right) \right] (2d)^i \\&+\,\left[ a_1 m+a_1 \alpha +\eta \chi c \alpha +\eta \chi c m-2 \eta ^2\right] m^i \\&+\,\left[ 4 \eta ^2 g-\eta \chi c \alpha -\eta \chi c m-\eta \chi c \alpha g-\eta \chi c m g-2 a_1 \alpha g-2 a_1 m g\right] (m+d)^i \\&+ \,\left. \left[ g\left( -2\eta ^2 g+a_1 m g+a_1\alpha g+\eta \chi c \alpha + \eta \chi c m\right) \right] (m+2d)^i \right\} ;\\ q_0= & {} q_0+\left[ \eta \chi c m-\eta \chi c \alpha +2 \eta ^2+a_1 m-a_1 \alpha \right] ; \\ r_i= & {} {\eta ^2\over 2}w_i. \end{aligned}$$

Appendix C: A Note on the 3/2 Stochastic Volatility Model with a Full Correlation Structure

With \(\delta =1, \ p={3\over 2} \) and letting \(k=a, \theta = A/a\), so that the volatility dynamics is

$$\begin{aligned} \mathrm{d}v= v(A-a v)\mathrm{d}t + \sigma v^{3/2} \mathrm{d}Z_2 +\chi \sqrt{r} \mathrm{d}Z_3, \end{aligned}$$

we need to solve (4.2) for the corresponding characteristic function. If we let

$$\begin{aligned} f(\phi ; \tau ,T, y,v,r) = {\mathrm{e}}^{ j\phi y} N(\tau , r, v) \end{aligned}$$

then on substituting into (4.2), we find that N needs to satisfy

$$\begin{aligned} {\partial N\over \partial \tau }= & {} \left( {\sigma ^2 v^{3}+\chi ^2 r\over 2}\right) {\partial ^2 N\over \partial v^2}+ {\eta ^2 r\over 2} {\partial ^2 N\over \partial r^2} + \left\{ \alpha \beta + r\left[ \gamma \eta a_7 -\left( \alpha + B(\tau ) \eta ^2\right) \right] \right\} {\partial N\over \partial r} \nonumber \\&+ \,\chi \eta r {\partial ^2 N\over \partial r \partial v} + \left[ v^2(-a+\rho \sigma a_7)+Av+r(-\chi \eta B(\tau )+\gamma \chi a_7)\right] {\partial N\over \partial v} \nonumber \\&+ \,\left\{ v\left[ -{\phi ^2\over 2}-{a_7\over 2}\right] + r \left[ -{\gamma ^2\phi ^2\over 2} + a_7 \left( 1-\gamma \eta B(\tau ) -{\gamma ^2\over 2}\right) \right] \right\} N, \end{aligned}$$
(C.1)

where \(a_7 = j\phi \) and subject to \(\tau =0, N= 1.\) With \(\chi \ne 0\), (C.1) does not admit solutions of the form \(F(r,\tau )G(v,\tau )\) or any Lie symmetries apart from the usual superposition and scaling symmetries of linear PDEs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goard, J. Closed-Form Formulae for European Options Under Three-Factor Models. Commun. Math. Stat. 8, 379–408 (2020). https://doi.org/10.1007/s40304-018-00176-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-018-00176-x

Keywords

Mathematics Subject Classification

Navigation