Skip to main content

Advertisement

Log in

The Effects of Habitat Loss on Genetic Diversity and Population Structure of Cedrela fissilis Vell.

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Cedrela fissilis Vell. has a wide distribution in South and Central America, and in neotropical forests the species occurs at a low density. Its wood is one of the most valued around the world, and the species is currently at risk of extinction due to both habitat fragmentation and illegal logging. Considering the need for conservation strategies, this study aims to investigate the genetic structure, diversity, and inbreeding in C. fissilis populations from the Atlantic Forest. To do this, nine microsatellite loci were used to genotype 289 individuals from eight undisturbed and disturbed fragments. Two of the eight populations harbor most of the genetic diversity: one includes most of the diversity present in all populations and the other is isolated but with high levels of diversity. Genetic diversity was higher within than among populations, with observed and expected heterozygosities ranging from 0.48 to 0.63 and from 0.55 to 0.70, respectively. We detected a significant fixation index, ranging from 0.08 to 0.24 and 32% of the observed alleles were exclusive of some population. The populations showed moderate genetic structure (FST = 0.10) and the Bayesian analysis grouped the studied individuals into three distinct genetic clusters that seem to be related to the presence of geographical barriers. The overall analyses of the results allow us to conclude that protecting only isolated fragments, either large or small, may be ineffective for conserving the C. fissilis gene pool in the studied region. This observation suggests that an appropriate strategy to conserve the gene pool of the species is to maintain both the Atlantic Forest green belt in the eastern portion of the Central and South region of this biome, where the forest is not highly fragmented, as well as the remaining forest areas to the west of the Paraná River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Biernaski FA, Higa AR, Silva LD (2012) Variabilidade genética para caracteres juvenis de progênies de Cedrela fissilis Vell.: subsídio para definição de zonas de coleta e uso de sementes. Rev Árvore 36:49–58. https://doi.org/10.1590/S0100-67622012000100006

    Article  Google Scholar 

  • Browne L, Ottewell K, Karubian (2015) Short-term genetic consequences of habitat loss and fragmentation for the Neotropical palm Oenocarpus bataua. Heredity 115:389–395. https://doi.org/10.1038/hdy.2015.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA/Florestas, Colombo

    Google Scholar 

  • Cavers S, Navarro C, Lowe AJ (2003) Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela Odorata L., in Mesoamerica. Mol Ecol 12:1451–1460. https://doi.org/10.1046/j.1365-294X.2003.01810.x

    Article  CAS  PubMed  Google Scholar 

  • Cavers S, Navarro C, Lowe AJ (2004) Targeting genetic resource conservation in widespread species: a case study of Cedrela odorata L. Forest Ecol Manag 197:285–294. https://doi.org/10.1016/j.foreco.2004.05.019

    Article  Google Scholar 

  • Cavers S, Telford A, Arenal Cruz F, Pérez Castañeda AJ, Valencia R, Navarro C, Buonamici A, Lowe AJ, Vendramin GG (2013) Cryptic species and phylogeographical structure in the tree Cedrela odorata L. throughout the Neotropics. J Biogeogr 40:732–746. https://doi.org/10.1111/jbi.12086

    Article  Google Scholar 

  • Coelho NHP, Tambarussi EV, Aguiar BI, Roque RH, Portela RM, Braga RC, Sanson D, Silva RAR, Ferraz EM, Moreno MA, Kageyama PY, Gandara FB (2018) Understanding genetic diversity, spatial genetic structure, and mating system through microsatellite markers for conservation and sustainable use of Acrocomia aculeata (Jacq.) Lodd. ex Mart. Conserv Genet 19:879–891. https://doi.org/10.1007/s10592-018-1061-z

    Article  CAS  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10:349–356. https://doi.org/10.1046/j.1365-294X.2001.01226.x

    Article  CAS  PubMed  Google Scholar 

  • Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70(3):697–708. https://doi.org/10.1590/S1519-69842010000400002

    Article  CAS  PubMed  Google Scholar 

  • Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphism in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Report 19(4):299–306. https://doi.org/10.1007/BF02772828

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA, VonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Flores TB (2018) Meliaceae in Flora do Brasil 2020 under construction. Jardim Botânico do Rio de Janeiro http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB9990. Accessed 25 June 2018

  • Franklin IA (1980) Evolutionary change in small population. In: Soulé ME (ed) Conservation biology, the science of scarcity and diversity. Sinauer Associates, Sunderlands

    Google Scholar 

  • Gandara FB (1996) Diversidade genética, taxa de cruzamento e estrutura espacial dos genótipos em uma população de Cedrela fissilis Vell. (Meliaceae). Thesis, Universidade Estadual de Campinas

  • Gandara FB, Tambarussi EV, Sebbenn AM, Ferraz EM, Moreno MA, Ciampi AY, Vianello RP, Grattapaglia D, Kageyama PY (2014) Development and characterization of microsatellite loci for Cedrela fissilis Vell (Meliaceae), an endangered tropical tree species. Silvae Genet 63(5):240–243. https://doi.org/10.1515/sg-2014-0031

    Article  Google Scholar 

  • Garcia MG, Silva RS, Carniello MA, Veldman JW, Rossi AAB, Oliveira LO (2011) Molecular evidence of cryptic speciation, historical range expansion, and recent intraspecific hybridization in the Neotropical season forest tree Cedrela fissilis (Meliaceae). Mol Phylogenet Evol 61:639–649. https://doi.org/10.1016/j.ympev.2011.08.026

    Article  CAS  PubMed  Google Scholar 

  • Gilpin ME, Soulá ME (1986) Minimum viable populations: process of species extinction. In: Soulé ME (ed) Conservation biology, the science of scarcity and diversity. Sinauer Associates, Sunderlands

    Google Scholar 

  • Goudet J (2002) FSTAT version 2.9.3.2, a program to estimate and test gene diversities and fixation indices. Institute of Ecology, Lausanne, Switzerland. http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 20 Aug 2017

  • Hamrick, JL (1983) The distribution of genetic variation within and among natural plant populations. In: Schonewold-Cox CM, Chambers SS, Mac-Bryde B, Thomas WL (Eds.) Genetics and conservation. Menlo Park

  • Hernández G, Buonamici A, Walker K, Vendramin GG, Navarro C, Cavers S (2008) Isolation and characterization of microsatellite markers for Cedrela odorata L. (Meliaceae), a high value neotropical tree. Conserv Genet 9:457–459. https://doi.org/10.1007/s10592-007-9334-y

    Article  CAS  Google Scholar 

  • Hirota MM (2003) Monitoring the Brazilian Atlantic rain Forest cover. In: Galindo-Leal C, Gusmão-Câmara I (eds) State of the hotspots: the Atlantic Forest of South America: biodiversity status, threats, and outlook. Center for Applied Biodiversity Sciences and Island Press, Washington

    Google Scholar 

  • IUCN (2018) The IUCN red list of threatened species. Version 2018-1. http://www.iucnredlist.org. Accessed 26 July 2018

  • Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473. https://doi.org/10.1111/nph.12989

    Article  PubMed  Google Scholar 

  • Kageyama PY, Sebbenn AM, Ribas LA, Gandara FB, Castellen M, Perecim MB, Vencovsky R (2003) Diversidade genética em espécies arbóreas tropicais de diferentes estágios sucessionais por marcadores genéticos. Sci Forums 64:93–107

    Google Scholar 

  • Kliman R, Sheehy B, Schultz J (2008) Genetic drift and effective population size. Nat Educ 1(3):3

    Google Scholar 

  • Laurance WF, Bierregaard RO (1997) Tropical forest remnants: ecology, management and conservation of fragmented communities. The University of Chicago Press, Chicago

    Google Scholar 

  • Lewinsohn TM, Prado PI (2002) Biodiversidade brasileira: síntese do estado atual do conhecimento. Editora Contexto, São Paulo

    Google Scholar 

  • Loveless MD, Hamrick JL (1987) Distribución de la variación en especies de árboles tropicales. Rev Biol Trop 35:165–175

    Google Scholar 

  • Lowe A, Harris S, Ashton P (2005) Ecological genetics: design, analysis, and application. Blackwell Publishing, Oxford

    Google Scholar 

  • Mangaravite E, Vinson CC, Rody HVH, Garcia MG, Carniello MA, Silva RS, Oliveira LO (2016) Contemporary patterns of genetic diversity of Cedrela fissilis offer insight into the shaping of seasonal forest in eastern South America. Am J Bot 103:307–3016. https://doi.org/10.3732/ajb.1500370

    Article  PubMed  Google Scholar 

  • Martins K, Chaves LJ, Buso GSC, Kageyama PY (2006) Mating system and fi ne-scale spatial genetic structure of Solanum lycocarpum St. hill. (Solanaceae) in the Brazilian Cerrado. Conserv Genet 7:957–969. https://doi.org/10.1007/s10592-006-9140-y

    Article  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffmann E, Pilgrim J, Mittermeier CG, Lamourux J, Fonseca AB (2004) Hotspots revisited: earth’s biodiversity richest and most endangered terrestrial ecoregions. Cemex, Washington

    Google Scholar 

  • Morellato LPC (1991) Estudo da fenologia de árvores, arbustos e lianas de uma floresta semi-decídua no sudeste do Brasil. Universidade Estadual de Campinas, Dissertation

    Google Scholar 

  • Moura TM, Sebben AM, Martins K, Moreno MA, Oliveira GCX, Chaves LJ, Kageyama PY (2011) Allelic diversity in population of Solanum lycocarpum a.St.-Hil (Solanaceae) in a protected area and a disturbed environment. Acta Bot Bras 25:937–940. https://doi.org/10.1590/S0102-33062011000400023

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x

    Article  CAS  PubMed  Google Scholar 

  • Ortego J, Aguirre MP, Noguerales V, Cordero PJ (2015) Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper. Evol Appl 8:621–632. https://doi.org/10.1111/eva.12273

    Article  PubMed  PubMed Central  Google Scholar 

  • Patiño-Valera F (1997) Genetic resources of Swietenia and Cedrela in the neotropics. United Nations food and agriculture organization. http://www.fao.org/docrep/006/AD111E/AD111E03.htm. Accessed 16 October 2018

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennington TD, Muellner AN (2010) A monograph of Cedrela (Meliaceae). dh Books, Milborne Port, England

  • Pennington TD, Styles BD, Taylor DAH (1981) Meliaceae. Flora Neotrop 28:235–244

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro MC, Martensen AC, Metzer JP, Tabarelli M, Scarano F, Fortin M-J (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Heidelberg, pp 405–434

    Chapter  Google Scholar 

  • Rohlf FJ (2002) NTSYS-pc version 2.11N, Exeter Software, Setauket, New York

  • Sebben AM, Carvalho AMC, Freitas MLM, Moraes SMB, Gaino APSC, Silva JM, Jolivet C, Moraes MLT (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorfii Desf. Heredity 106:134–145. https://doi.org/10.1038/hdy.2010.33

    Article  CAS  Google Scholar 

  • Sebbenn AM (2003) Tamanho amostral para conservação ex situ de espécies arbóreas com sistemas misto de reprodução. Rev Inst Flor 15:147–162

    Google Scholar 

  • Smith J, Earle C (1960) A revision of Cedrela fissilis (Meliaceae). Fieldiana 29(5):295–341

    Google Scholar 

  • Soldati MC, Fornes L, Zonneveld MV, Thomas E, Zelener N (2013) An assessment of the genetic diversity of Cedrela balansae C. DC. (Meliaceae) in northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochem Syst Ecol 47:45–55. https://doi.org/10.1016/j.bse.2012.10.011

    Article  CAS  Google Scholar 

  • Soldati MC, Inza MV, Fornes L, Zelener N (2014) Cross transferability of SSR markers to endangered Cedrela species that grow in Argentinean subtropical forests, as a valuable tool for population genetic studies. Biochem Syst Ecol 53:8–16. https://doi.org/10.1016/j.bse.2013.12.003

    Article  CAS  Google Scholar 

  • SOS Mata Atlântica (2018) Mata Atlântica. https://www.sosma.org.br/nossas-causas/mata-atlantica/. Accessed 26 July 2018

  • SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais – INPE (2018) Atlas dos Remanescentes florestais da Mata Atlântica Período 2016–2017: Relatório Técnico. https://www.sosma.org.br/link/Atlas_Mata_Atlantica_2016-2017_relatorio_tecnico_2018_final.pdf. Accessed 26 July 2018

  • Steinbach F, Longo AN (1992) Lista preliminar das espécies da flora apícola nativa da Fazenda Faxinal. Revista do Instituto Florestal 4:347–349

    Google Scholar 

  • Tacuatiá LO, Eggers L, Kaltchuk-Santos E, Souza-Chies TT (2012) Population genetic structure of Sisyirinchium micranthum Cav. (Iridaceae) in Itapuã State Park, southern Brazil. Genet Mol Biol 35:99–105. https://doi.org/10.3732/ajb.1200105

    Article  PubMed  PubMed Central  Google Scholar 

  • Tambarussi EV, Boshier D, Vencovsky R, Freitas MLM, Di-Dio OJ, Sebbenn AM (2016) Several small: how inbreeding affects conservation of Cariniana legalis Mart. Kuntze (Lecythidaceae) the Brazilian Atlantic Forest's largest tree. Int For Rev 18:502–510. https://doi.org/10.1505/146554816820127550

    Article  Google Scholar 

  • Tambarussi EV, Sebben AM, Alves-Pereira A, Vencovsky R, Cambuim J, Silva AM, Moraes MA, Moraes MLT (2017) Dipteryx alata Vogel (Fabaceae), a neotropical tree with high levels of selfing: implications for conservation and breeding programs. Ann For Res 60:243–261. https://doi.org/10.15287/afr.2017.842

    Article  Google Scholar 

  • Tarazi R, Moreno MA, Gandara FB, Ferraz EM, Moraes MLT, Vinson CC, Ciampi AY, Vencovsky R, Kageyama PY (2010) High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata Vog. (Fabaceae). Genet Mol Biol 33:78–85. https://doi.org/10.1590/S1415-47572010005000007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas WW, Carvalho AMV, Amorim AMA, Garrison J, Arbeláez AI (1998) Plant endemism in two forests in southern Bahia, Brazil. Biodivers Conserv 7:311–322. https://doi.org/10.1023/A:1008825627656

    Article  Google Scholar 

  • Vencovsky R (1994) Variance on an estimative of outcrossing rate. Revista Brasileira de Genética 17:349–351

    Google Scholar 

  • Vencovsky R, Crossa J (1999) Variance effective populations size under mixed self and random mating with applications to genetic conservation of species. Crop Sci 39:1289–1294. https://doi.org/10.2135/cropsci1999.3951282x

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:139–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE 32-version 1.31. Population genetics software

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. https://doi.org/10.1016/0169-5347(96)10045-8

    Article  CAS  PubMed  Google Scholar 

  • Zachos FE, Habel JC (2011) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer Science & Business Media, Tokyo

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro Vagner Tambarussi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Dmitry A Filatov

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In Memoriam of Paulo Y. Kageyama

Electronic supplementary material

ESM 1

(XLS 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandara, F.B., Da-Silva, P.R., de Moura, T.M. et al. The Effects of Habitat Loss on Genetic Diversity and Population Structure of Cedrela fissilis Vell.. Tropical Plant Biol. 12, 282–292 (2019). https://doi.org/10.1007/s12042-019-09234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-019-09234-2

Keywords

Navigation