Skip to main content
Log in

Impact of Agrobacterium-infiltration and transient overexpression of BroMYB28 on glucoraphanin biosynthesis in broccoli leaves

  • Short Communication
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

To date studies revealed that MYB28 intensively involved biosynthesis of GSLs, there is no direct evidence of MYB28 in glucoraphanin (GR) biosynthesis of broccoli. Furthermore, Agrobacterium (Agro)-infiltration also induced GSLs in Arabidopsis. However, there is no information regarding Agro-dependent GR accumulation in broccoli. We revealed that over-expression of BroMYB28 could accumulate GR, and Agro-infiltration is also enough to induce the accumulation of GR in broccoli. From our results, it is suggested that they used different regulatory mechanisms; BroMYB28 over-expression induced both BroMYB28 and BroMYB29 (Bol008849-like) transcripts; Agro-infiltration induced only BroMYB29 (Bol008849-like) transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Babicki S, Armdt D, Marcu A, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enable heat mapping for all. Nucl Acids Res 44:W147–W153

    Article  CAS  Google Scholar 

  • Baskar V, Park SW (2015) Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis. C R Biol 338:434–442

    Article  Google Scholar 

  • Chen Y, Yang X, He K, Liu M, Li J, Gao Z et al (2006) The MYB transcription factor family. Plant Mol Biol 60:107–124

    Article  CAS  Google Scholar 

  • Eberhardt MV, Kobira K, Keck AS, Juvik JA, Jeffery EH (2005) Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. var. italica). J Agric Food Chem 53:7421–7431

    Article  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  Google Scholar 

  • Faulkner K, Mithen R, Williamson G (1998) Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19:605–609

    Article  CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea. Theor Appl Genet 93:1006–1010

    Article  CAS  Google Scholar 

  • Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261

    Article  CAS  Google Scholar 

  • Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge UI (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642

    Article  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  Google Scholar 

  • Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2:425–431

    Article  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Hecht S (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32:395–411

    Article  CAS  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K et al (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  Google Scholar 

  • Khakimov B et al (2015) Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant Journal 84:478–490

    Article  CAS  Google Scholar 

  • Kim Y, Li X, Kim SJ, Kim HH, Lee J, Kim H et al (2013) MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Molecules 18:8682–8695

    Article  CAS  Google Scholar 

  • Kushad MM, Cloyd R, Babadoost M (2004) Distribution of glucosinolates in ornamental cabbage and kale cultivars. Sci Hortic 101:215–221

    Article  CAS  Google Scholar 

  • Miao H, Wei J, Zhao Y, Yan H, Sun B, Huang J et al (2013) Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J Exp Bot 64:1097–1109

    Article  CAS  Google Scholar 

  • Miao H, Wang J, Cai C, Chang J, Zhao Y, Wang Q (2017) Accumulation of Glucosinolates in Broccoli. In: Ramawat K, Mérillon JM (eds) Glucosinolates. Reference series in phytochemistry. Springer, Cham

    Google Scholar 

  • Migocka M, Papierniak A (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breed 28:343–357

    Article  Google Scholar 

  • Mikkelsen MD, Olsen CE, Halkier BA (2010) Production of the cancer-preventive glucorphanin in tobacco. Mol Plant 3:751–759

    Article  CAS  Google Scholar 

  • Mithen R, Faulkner K, Rose P, Williamson G, Marquez J (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106:727–734

    Article  CAS  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: imageJ for the next generation of scientific image data. BMC Bioinform 18:529

    Article  Google Scholar 

  • Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S (2006) Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine derived glucosinolates in Arabidopsis. Plant Cell 18:2664–2679

    Article  CAS  Google Scholar 

  • Shapiro SL, Schwartz GE, Bonner G (1998) Effects on mindfulness-based stress reduction on medical and premedical studies. J Behav Med 21:581–599

    Article  CAS  Google Scholar 

  • Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One 2:e1322

    Article  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  Google Scholar 

  • Subramoni S, Nathoo N, Klimov E, Yuan ZC (2014) Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front Plant Sci 5:322

    Article  Google Scholar 

  • Traka MH, Saha S, Huseby S, Kopriva S, Walley PG et al (2013) Genetic regulation of glucoraphanin accumulation in Beneforte broccoli. New Phytol 198:1085–1095

    Article  CAS  Google Scholar 

  • Velasco P, Cartea ME, Gonzalez C, Vilar M, Ordas A (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J Agric Food Chem 55:955–962

    Article  CAS  Google Scholar 

  • Yi GE, Robin AH, Yang K, Park JI, Kang JG, Yang TJ, Nou IS (2015) Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 20:13089–13111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Bio-industry Technology Development Program (Grant nos. 117043-3, 111057-5) of iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyeob Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YC., Cha, A., Hussain, M. et al. Impact of Agrobacterium-infiltration and transient overexpression of BroMYB28 on glucoraphanin biosynthesis in broccoli leaves. Plant Biotechnol Rep 14, 373–380 (2020). https://doi.org/10.1007/s11816-019-00591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-019-00591-8

Keywords

Navigation