Skip to main content
Log in

A Novel Approach for EEG Electrode Selection in Automated Emotion Recognition Based on Lagged Poincare’s Indices and sLORETA

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The goal of this paper was to develop a novel method to track emotional processing in different brain regions using electroencephalogram (EEG) analysis. In addition, the role of EEG electrode selection and feature reduction in emotion recognition was investigated. To this end, the multi-channel EEG signals of 32 subjects available in DEAP dataset were studied. The best EEG electrode positions were selected based on lagged Poincare’s measures of EEG recordings and a source localization method (sLORETA). Three feature reduction algorithms, including random subset feature selection (RSFS), sequential floating forward selection (SFFS), and sequential forward selection (SFS) in combination with support vector machine (SVM), were evaluated to classify high/low valence and high/low arousal. The results showed that RSFS outperformed the other feature selection approaches. In addition, the positive impact of the EEG electrode selection on the classification performances has been confirmed. The most active EEG electrodes were FP1, C3, Cp1, P3, and Pz. Adopting RSFS and selected EEG electrodes, the mean subject-independent accuracies of 73.89 and 74.62% and subject-dependent accuracies of 98.97 and 98.94% were obtained for valence and arousal dimensions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buchanan TW, Tranel D. Central and peripheral nervous system interactions: from mind to brain to body. Int J Psychophysiol. 2009;72:1–4.

    Article  PubMed  Google Scholar 

  2. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, et al. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil. 2008;5:25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol. 2010;84:394–421.

    Article  PubMed  Google Scholar 

  4. Zhalehpour S, Akhtar Z, Erdem CE. Multimodal emotion recognition based on peak frame selection from video. Signal Image Video P. 2016;10:827–34.

    Article  Google Scholar 

  5. Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput. 2018;10:368–80.

    Article  Google Scholar 

  6. Jing S, Mao X, Chen L. Prominence features: effective emotional features for speech emotion recognition. Digit Signal Process. 2018;72:216–31.

    Article  Google Scholar 

  7. Sun X, Lv M. Facial expression recognition based on a hybrid model combining deep and shallow features. Cogn Comput. 2019. https://doi.org/10.1007/s12559-019-09654-y.

  8. Griol D, Molina JM, Callejas Z. Combining speech-based and linguistic classifiers to recognize emotion in user spoken utterances. Neurocomputing. 2019;326–327:132–40.

    Article  Google Scholar 

  9. Shi F, Dey N, Ashour AS, Sifaki-Pistolla D, Sherratt RS. Meta-KANSEI modeling with valence-arousal fMRI dataset of brain. Cogn Comput. 2019;11:227–40.

    Article  Google Scholar 

  10. Goshvarpour A, Abbasi A, Goshvarpour A. Do men and women have different ECG responses to sad pictures? Biomed Signal Process Control. 2017;38:67–73.

    Article  Google Scholar 

  11. Goshvarpour A, Abbasi A, Goshvarpour A. Fusion of heart rate variability and pulse rate variability for emotion recognition using lagged Poincare plots. Australas Phys Eng Sci Med. 2017;40:617–29.

    Article  PubMed  Google Scholar 

  12. Goshvarpour A, Abbasi A, Goshvarpour A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed J. 2017;40:355–68.

    Article  PubMed  Google Scholar 

  13. Zheng W. Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis. IEEE Trans Cogn Dev Syst. 2017;9:281–90.

    Article  Google Scholar 

  14. Zubair M, Yoon C. EEG based classification of human emotions using discrete wavelet transform. In: Kim K, Kim H, Baek N, editors. IT Convergence and Security 2017. Lecture Notes in Electrical Engineering, vol. 450. Singapore: Springer; 2018. p. 21–8.

    Chapter  Google Scholar 

  15. Aftanas LI, Lotova NV, Koshkarov VI, Makhnev VP, Mordvintsev YN, Popov SA. Non-linear dynamic complexity of the human EEG during evoked emotions. Int J Psychophysiol. 1998;28:63–76.

    Article  CAS  PubMed  Google Scholar 

  16. Bos DO. EEG-based emotion recognition, the influence of visual and auditory stimuli: Capita Selecta, University of Twente; 2006. p. 1–17.

  17. Hoseingholizade S, Hashemi Golpaygani MR, Saburruh Monfared A. Studying emotion through nonlinear processing of EEG. Procedia Soc Behav Sci. 2012;32:163–9.

    Article  Google Scholar 

  18. Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput. 2014;5:327–39.

    Article  Google Scholar 

  19. Goshvarpour A, Abbasi A, Goshvarpour A. Dynamical analysis of emotional states from electroencephalogram signals. Biomed Eng Appl Basis Commun. 2016;28:1650015.

    Article  Google Scholar 

  20. Goshvarpour A, Abbasi A, Goshvarpour A. Combination of sLORETA and nonlinear coupling for emotional EEG source localization. Nonlinear Dyn Psychol Life Sci. 2016;20:353–68.

    Google Scholar 

  21. Heraz A, Frasson C. Predicting the three major dimensions of the learner’s emotions from brainwaves. World Acad Sci Eng Technol. 2007;25:323–9.

    Google Scholar 

  22. Wang X-W, Nie D, Lu B-L. Emotional state classification from EEG data using machine learning approach. Neurocomputing. 2014;129:94–106.

    Article  Google Scholar 

  23. Liu Y, Sourina O. Real-time subject-dependent EEG-based emotion recognition algorithm. In: Gavrilova ML, Tan CJK, Mao X, Hong L, editors. Trans. on Comput. Sci. XXIII: LNCS; 2014. p. 199–223.

  24. Bhatti AM, Majid M, Anwar SM, Khan B. Human emotion recognition and analysis is response to audio music using brain signals. Comput Hum Behav. 2016;65:267–75.

    Article  Google Scholar 

  25. Zheng W-L, Lu B-L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Mental Dev. 2015;7:162–75.

    Article  Google Scholar 

  26. Zhang Y, Ji X, Zhang S. An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci Lett. 2016;633:152–7.

    Article  CAS  PubMed  Google Scholar 

  27. Mert A, Akan A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Anal Appl. 2016:1–9.

  28. Kumar N, Khaund K, Hazarika SM. Bispectral analysis of EEG for emotion recognition. Procedia Comput Sci. 2016;84:31–5.

    Article  Google Scholar 

  29. Bozhkov L, Koprinkova-Hristova P, Georgieva P. Reservoir computing for emotion valence discrimination from EEG signals. Neurocomputing. 2017;231:28–40.

    Article  Google Scholar 

  30. Mehmood RM, Du R, Lee HJ, Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors, IEEE Access 5 (Special Section: Advances of Multisensory Services and Technologies for Healthcare in Smart Cities), 2017, pp. 14797–14806.

  31. Goshvarpour A, Abbasi A, Goshvarpour A. Indices from lagged Poincare plots of heart rate variability: an efficient nonlinear tool for emotion discrimination. Australas Phys Eng Sci Med. 2017;40:277–87.

    Article  PubMed  Google Scholar 

  32. Goshvarpour A, Goshvarpour A. Poincaré’s section analysis for PPG-based automatic emotion recognition. Chaos, Solitons Fractals. 2018;114:400–7.

    Article  Google Scholar 

  33. Goshvarpour A, Abbasi A, Goshvarpour A, Daneshvar S. Discrimination between different emotional states based on the chaotic behavior of galvanic skin responses. Signal Image Video P. 2017;11:1347–55.

    Article  Google Scholar 

  34. Goshvarpour A, Goshvarpour A, Abbasi A. Evaluation of signal processing techniques in discriminating ECG signals of men and women during rest condition and emotional states. Biomed Eng Appl Basis Commun. 2018;30:1850028.

    Article  Google Scholar 

  35. Nardelli M, Valenza G, Greco A, Lanata A, Scilingo E. Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans Affect Comput. 2015;6:385–94.

    Article  Google Scholar 

  36. Goshvarpour A, Goshvarpour A. EEG spectral powers and source localization in depressing, sad, and fun music videos focusing on gender differences. Cogn Neurodyn. 2019;13:161–73.

    Article  PubMed  Google Scholar 

  37. Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, et al. DEAP: A database for emotion analysis using physiological signals. IEEE Trans Affect Comput. 2012;3:18–31.

    Article  Google Scholar 

  38. Morris JD. SAM: the self-assessment manikin. An efficient cross-cultural measurement of emotional response. J Advert Res. 1995;35:63–8.

    Google Scholar 

  39. Schack B, Vath N, Petsche H, Geissler HG, Moller E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol. 2002;44:143–63.

    Article  CAS  PubMed  Google Scholar 

  40. Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65.

    Article  CAS  PubMed  Google Scholar 

  41. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol. 2002;24:91–5.

    PubMed  Google Scholar 

  42. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24:5–12.

    PubMed  Google Scholar 

  43. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system - an approach to cerebral imaging. New York: Thieme Medical Publishers; 1988.

    Google Scholar 

  44. RD. Pascual-Marqui, Discrete, 3D distributed, linear imaging methods of electric neuronal activity Part 1: exact, zero error localization, (2007), http://arxivorg/pdf/07103341

  45. Jatoi MA, Kamel N, Malik AS, Faye I, Begum T. A survey of methods used for source localization using EEG signal. Biomed Signal Process. Control. 2014;11:42–52.

    Article  Google Scholar 

  46. Whitney AW. A direct method of nonparametric measurement selection. IEEE Trans Comput. 1971;20:1100–3.

    Article  Google Scholar 

  47. Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett. 1994;15:1119–25.

    Article  Google Scholar 

  48. Räsänen O, Pohjalainen J. Random subset feature selection in automatic recognition of developmental disorders, affective states, and level of conflict from speech. Interspeech. 2013:210–4.

  49. Breed MD. Conceptual breakthroughs in ethology and animal behavior, Chapter 74: 2000 Emotion and the Brain: Academic Press, Elsevier; 2017. p. 225–6.

  50. Ueda K, Fujimoto G, Ubukata S, Murai T. Brodmann Areas 11, 46, and 47: emotion, memory, and empathy. Brain Nerve. 2017;69:367–74.

    PubMed  Google Scholar 

  51. Pouladi F, Moradi A, Rostami R, Nosratabadi M. Source localization of the effects of Persian classical music forms on the brain waves by QEEG. Procedia Soc Behav Sci. 2010;5:770–3.

    Article  Google Scholar 

  52. Flores-Gutiérrez EO, Díaz JL, Barrios FA, Favila-Humara R, Guevara MA, del Río-Portilla Y, et al. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol. 2007;65:69–84.

    Article  PubMed  Google Scholar 

  53. Ohira H, Nomura M, Ichikawa N, Isowa T, Iidaka T, Sato A, et al. Association of neural and physiological responses during voluntary emotion suppression. Neuroimage. 2006;29:721–33.

    Article  PubMed  Google Scholar 

  54. Zatorre R, McGill J. Music, the food of neuroscience? Nature. 2005;434:312–5.

    Article  CAS  PubMed  Google Scholar 

  55. Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, et al. Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci. 2000;20:7752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khalfa S, Schon D, Anton JL, Liegeois-Chauvel C. Brain regions involved in the recognition of happiness and sadness in music. NeuroReport. 2005;16:1981–4.

    Article  PubMed  Google Scholar 

  57. Ozerdem MS, Polat H. Emotion recognition based on EEG features in movie clips with channel selection. Brain Inform. 2017;4:241–52.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bahrdwaj A, Gupta A, Jain P, Rani A, Yadav J. Classification of human emotions from EEG signals using SVM and LDA classifiers. In: 2nd international conference on signal processing and integrated networks (SPIN); 2015. p. 180–5.

    Google Scholar 

  59. Hadjidimitriou SK, Zacharakis AI, Doulgeris PC, Panoulas KJ, Hadjileontiadis LJ, Panas SM. Revealing action representation processes in audio perception using fractal EEG analysis. IEEE Trans Biomed Eng. 2011;58:1120–9.

    Article  PubMed  Google Scholar 

  60. Stalans L, Wedding D. Superiority of the left hemisphere in the recognition of emotional faces. Int J Neurosci. 1985;25:219–23.

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura A, Maess B, Knosche TR, Friederici AD. Different hemispheric roles in recognition of happy expressions. PLoS ONE. 2014;9:e88628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lindell A. Lateralization of the expression of facial emotion in humans. In: Forrester GS, Hopkins WD, Hudry K, Lindell A, editors. Progress in Brain Research: Elsevier; 2018. p. 249–70.

  63. Ross P, de Gelder B, Crabbe F, Grosbras M-H. Emotion modulation of the body-selective areas in the developing brain. Dev Cogn Neuros-Neth. 2019;38:100660.

    Article  Google Scholar 

  64. Wyczesany M, Capotosto P, Zappasodi F, Prete G. Hemispheric asymmetries and emotions: evidence from effective connectivity. Neuropsychologia. 2018;121:98–105.

    Article  PubMed  Google Scholar 

  65. Naji M, Firoozabadi M, Azadfallah P. Emotion classification during music listening from forehead biosignals. Signal Image Video P. 2015;9:1365–75.

    Article  Google Scholar 

  66. Hatamikia S, Maghooli K, Nasrabadi AM. The emotion recognition system based on autoregressive model and sequential forward feature selection of electroencephalogram signals. J Med Signals Sens. 2014;4:194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  67. S.Y. Chung, H.J. Yoon, Affective classification using bayesian classifier and supervised learning, in 12th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2012, pp. 1768–1771.

  68. Zhang X, Hu B, Chen J, Moore P. Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web. 2013;16:497–513.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atefeh Goshvarpour.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article examined the EEG signals of DEAP dataset [37], and this article does not contain any studies with human participants performed by any of the authors.

Informed Consent

This article examined the EEG signals of DEAP dataset [37], in which informed consent was obtained from all individual participants included in the study [37].

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goshvarpour, A., Goshvarpour, A. A Novel Approach for EEG Electrode Selection in Automated Emotion Recognition Based on Lagged Poincare’s Indices and sLORETA. Cogn Comput 12, 602–618 (2020). https://doi.org/10.1007/s12559-019-09699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-019-09699-z

Keywords

Navigation