Skip to main content
Log in

PVDF-SIC Composite Thick Films an Effective ESD Composition for Growing Anti-static Applications

  • Progress and Challenges in Developing Electromagnetic Interference Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thin polyvinylidene fluoride-silicon carbide (PVDF-SiC) shielding composite films were prepared by a simple solution casting process. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show the presence of both polymer and filler with no reaction between them. The coefficient of thermal expansion (CTE) and tensile strength of the composite exhibit a decreasing tendency, while that of conductivity and electromagnetic interference (EMI) shielding values increase with filler loading. The εr, and tanδ of the composites were also found to increase with filler loading in the frequency range of 8.2–18 GHz, which also influence the shielding behaviour of the composite. The high filler (60 vol.% of SiC) loaded composite of 1 mm thickness exhibits direct current (DC) conductivity of the order of 10−5 S/m indicating its potential for electrostatic discharge shielding applications. This is further confirmed from its EMI SE value of 12 dB, which corresponds 94% attenuation. The composite exhibits a partially reflecting and absorbing shielding nature, without any dominant shielding mechanism. The alternating current (AC) conductivity and skin depth value of the composites exhibit an inverse relationship with each other and influence the shielding thickness. The attenuating power of the PVDF-SiC composite with 60 volume % (vol.%) silicon carbide (SiC) changes from 84% to 99%, with an increase in sample thickness from 0.5 mm to 2 mm. Hence, thin and flexible paper-like EMI shield of PVDF-SiC composite can be easily prepared by simple, cost-effective approach for various shielding applications like electrostatic discharge shielding as well as EMI shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, H. Yang, X. Hao, N. Sun, J. Du, and M. Cao, J. Alloys Compd. 772, 99 (2019).

    Article  CAS  Google Scholar 

  2. Y. Mamunyaa, L. Matzuib, L. Vovchenkob, O. Maruzhenkoa, V. Oliynykb, S. Puszc, B. Kumanekc, and U. Szelugac, Compos. Sci. Technol. 170, 51 (2019).

    Article  Google Scholar 

  3. S. Iqbal, J. Shah, R.K. Kotnala, and S. Ahmad, J. Alloys Compd. 779, 487 (2019).

    Article  CAS  Google Scholar 

  4. S. Lin, S. Ju, J. Zhang, G. Shi, Y. He, and D. Jiang, RSC Adv. 9, 1419 (2019).

    Article  CAS  Google Scholar 

  5. N. Bagotiaa, V. Choudharyb, and D.K. Sharma, Compos. B 159, 378 (2019).

    Article  Google Scholar 

  6. https://www.et-esd.de/schuhezubehoer/2019.

  7. R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett. 83, 2928 (2003).

    Article  CAS  Google Scholar 

  8. W.D. Kimmel and D.D. Gerke, Med. Dev. Diagn. Ind. 20, 102 (1998).

    Google Scholar 

  9. J.E. Vinson and J.J. Liou, Proc. IEEE 86, 399 (1998).

    Article  Google Scholar 

  10. N. Joseph, J. Chameswary, and M.T. Sebastian, Compos. Sci. Technol. 101, 139 (2014).

    Article  CAS  Google Scholar 

  11. Z. An, C. Ye, R. Zhang, and Q. Qu, J. Sol-Gel. Sci. Technol. 89, 623 (2019).

    Article  CAS  Google Scholar 

  12. M. Izawa, T. Koseki, Y. Kamiya, and T. Toyomasu, Rev. Sci. Instrum. 66, 1910 (1995).

    Article  CAS  Google Scholar 

  13. C. Wang, Y. Liu, Q. You, F. Ye, and L. Cheng, Ceram. Int. 45, 5637 (2019).

    Article  CAS  Google Scholar 

  14. L.Q. Chen, X.W. Yin, X.M. Fan, M. Chen, X.K. Ma, L.F. Cheng, and L.T. Zhang, Carbon 95, 10 (2015).

    Article  CAS  Google Scholar 

  15. H. Wang, D. Zhu, Y. Mu, W. Zhou, and F. Luo, Ceram. Int. 41, 14094 (2015).

    Article  CAS  Google Scholar 

  16. D.H. Ding, Y.M. Shi, Z.H. Wu, W.C. Zhou, F. Luo, and J. Chen, Carbon 60, 552 (2013).

    Article  CAS  Google Scholar 

  17. H. Mei, D.Y. Han, S.S. Xiao, T.M. Ji, J. Tang, and L.F. Cheng, Carbon 109, 149 (2016).

    Article  CAS  Google Scholar 

  18. N. Joseph and M.T. Sebastian, Mater. Lett. 90, 64 (2013).

    Article  CAS  Google Scholar 

  19. N. Joseph, J. Varghese, and M.T. Sebastian, Compos. B 123, 271 (2017).

    Article  CAS  Google Scholar 

  20. N. Joseph, S.K. Singh, R.K. Sirugudu, V.R.K. Murthy, S. Ananthakumar, and M.T. Sebastian, Mater. Res. Bull. 48, 1681 (2013).

    Article  CAS  Google Scholar 

  21. R.K. Goyal, A.N. Tiwari, U.P. Mulik, and Y.S. Negi, Compos. Sci. Technol. 67, 1802 (2007).

    Article  CAS  Google Scholar 

  22. M. Rusu, N. Sofian, and D. Rusu, Polym. Test. 20, 409 (2001).

    Article  CAS  Google Scholar 

  23. K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, and R. Ratheesh, Compos. Part A 40, 1179 (2009).

    Article  Google Scholar 

  24. M.T. Sebastian, Dielectrics for Wireless Communications (UK: Elsevier, 2008).

    Google Scholar 

  25. J. Sun, J. Li, G. Sun, B. Zhang, S. Zhang, and H. Zhai, Ceram. Int. 28, 741 (2002).

    Article  CAS  Google Scholar 

  26. N. Joseph, J. Varghese, and M.T. Sebastian, J. Mater. Chem. C 4, 999 (2016).

    Article  CAS  Google Scholar 

  27. N. Joseph, J. Varghese, and M.T. Sebastian, Polym. J. 49, 391 (2017).

    Article  CAS  Google Scholar 

  28. N. Joseph, J. Varghese, and M.T. Sebastian, RSC Adv. 5, 20459 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mailadil Thomas Sebastian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, N., Varghese, J. & Sebastian, M.T. PVDF-SIC Composite Thick Films an Effective ESD Composition for Growing Anti-static Applications. J. Electron. Mater. 49, 1638–1645 (2020). https://doi.org/10.1007/s11664-019-07538-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07538-3

Keywords

Navigation