Skip to main content
Log in

Low-degree test with polynomially small error

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

A long line of work in Theoretical Computer Science shows that a function is close to a low-degree polynomial iff it is locally close to a low-degree polynomial. This is known as low-degree testing and is the core of the algebraic approach to construction of PCP. We obtain a low-degree test whose error, i.e., the probability it accepts a function that does not correspond to a low-degree polynomial, is polynomially smaller than existing low-degree tests. A key tool in our analysis is an analysis of the sampling properties of the incidence graph of degree-k curves and k′-tuples of points in a finite space \({\mathbb{F}^m}\). We show that the Sliding Scale Conjecture in PCP, namely the conjecture that there are PCP verifiers whose error is exponentially small in their randomness, would follow from a derandomization of our low-degree test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon N., Bruck J., Naor J., Naor M., Roth R. (1992) Construction of asymptotically good, low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory 38: 509–516

    Article  MATH  Google Scholar 

  • Arora S., Lund C., Motwani R., Sudan M., Szegedy M. (1998) Proof verification and the hardness of approximation problems. Journal of the ACM 45(3): 501–555

    Article  MathSciNet  MATH  Google Scholar 

  • Arora S., Safra S. (1998) Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM 45(1): 70–122

    Article  MathSciNet  MATH  Google Scholar 

  • Arora S., Sudan M. (2003) Improved low-degree testing and its Applications. Combinatorica 23(3): 365–426

    Article  MathSciNet  MATH  Google Scholar 

  • L. Babai, L. Fortnow, L. A. Levin & M. Szegedy (1991a). Checking computations in polylogarithmic time. In Proc. 23rd ACM Symp. on Theory of Computing, 21–32.

  • L. Babai, L. Fortnow & C. Lund (1991b). Nondeterministic Exponential Time Has Two-Prover Interactive Protocols. Computational Complexity 1, 3–40

  • M. Bellare, S. Goldwasser, C. Lund & A. Russell (1993). Efficient probabilistically checkable proofs and applications to approximations. In Proc. 25th ACM Symp. on Theory of Computing, 294–304.

  • Ben-Sasson E., Goldreich O., Harsha P., Sudan M., Vadhan S. (2006) Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing 36(4): 889–974

    Article  MathSciNet  MATH  Google Scholar 

  • E. Ben-Sasson, M. Sudan, S. P. Vadhan & A. Wigderson (2003). Randomness-efficient low degree tests and short PCPs via epsilonbiased sets. In Proc. 34th ACM Symp. on Theory of Computing, 612–621.

  • M. Braverman & A. Garg (2015). Small Value Parallel Repetition for General Games. In Proc. 48th ACM Symp. on Theory of Computing, 335–340.

  • M. R. Capalbo, O. Reingold, S. P. Vadhan & A. Wigderson (2002). Randomness Conductors and Constant-Degree Lossless Expanders. In Proc. 34th ACM Symp. on Theory of Computing, 659–668.

  • Dinur I., Fischer E., Kindler G., Raz R., Safra S. (2011) PCP Characterizations of NP: Toward a Polynomially-Small Error-Probability. Computational Complexity 20(3): 413–504

    Article  MathSciNet  MATH  Google Scholar 

  • I. Dinur & E. Goldenberg (2008). Locally Testing Direct Product in the Low Error Range. In Proc. 49th IEEE Symp. on Foundations of Computer Science, 613–622.

  • I. Dinur & P. Harsha (2009). Composition of Low-Error 2-Query PCPs Using Decodable PCPs. In Proc. 50th IEEE Symp. on Foundations of Computer Science, 472–481.

  • Dinur I., Reingold O. (2006) Assignment Testers: Towards a Combinatorial Proof of the PCP Theorem. SIAM Journal on Computing 36(4): 975–1024

    Article  MathSciNet  MATH  Google Scholar 

  • I. Dinur & D. Steurer (2014a). Analytical Approach to Parallel Repetition. In Proc. 47th ACM Symp. on Theory of Computing, 624–633.

  • I. Dinur & D. Steurer (2014b). Direct Product Testing. In Computational Complexity Conference, 188–196.

  • U. Feige & J. Kilian (1995). Impossibility results for recycling random bits in two-prover proof systems. In Proc. 27th ACM Symp. on Theory of Computing, 457–468.

  • P. Gemmell, R. J. Lipton, R. Rubinfeld, M. Sudan & A. Wigderson (1991). Self-Testing/Correcting for Polynomials and for Approximate Functions. In Proc. 23rd ACM Symp. on Theory of Computing, 32–42.

  • Goldreich O., Safra S. (2000) A Combinatorial Consistency Lemma with Application to Proving the PCP Theorem. SIAM J. Comput. 29(4): 1132–1154

    Article  MathSciNet  MATH  Google Scholar 

  • Impagliazzo R., Kabanets V., Wigderson A. (2012) New Direct-Product Testers and 2-Query PCPs. SIAM Journal on Computing 41(6): 1722–1768

    Article  MathSciNet  MATH  Google Scholar 

  • S. M. Johnson (1962). A new upper bound for error-correcting codes. IRE Transactions on Information Theory 203–207.

  • D. Moshkovitz (2011). Lecture notes in Probabilistically Checkable Proofs. Available on the author’s webpage.

  • D. Moshkovitz (2014a). An Approach To The Sliding Scale Conjecture Via Parallel Repetition For Low Degree Testing. Technical Report 30, ECCC.

  • D. Moshkovitz (2014b). Parallel Repetition From Fortification. In Proc. 55th IEEE Symp. on Foundations of Computer Science, 414–423.

  • D. Moshkovitz, G. Ramnarayan & H. Yuen (2015). A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, 42:3–42:29.

  • Moshkovitz D., Raz R. (2008) Sub-Constant Error Low Degree Test of Almost-Linear Size. SIAM Journal on Computing 38(1): 140–180

    Article  MathSciNet  MATH  Google Scholar 

  • D. Moshkovitz & R. Raz (2010). Two Query PCP with Sub-Constant Error. Journal of the ACM 57(29).

  • R. Raz & S. Safra (1997). A Sub-Constant Error-Probability Low-Degree Test and a Sub-Constant Error-Probability PCP Characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing, 475–484.

  • Reingold O., Vadhan S.P., Wigderson A. (2002) Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors. Annals of Mathematics 155(1): 157–187

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinfeld R., Sudan M. (1996) Robust Characterizations of Polynomials with Applications to Program Testing. SIAM Journal on Computing 25(2): 252–271

    Article  MathSciNet  MATH  Google Scholar 

  • M. Szegedy (1999). Many-Valued Logics and Holographic Proofs. In Automata, Languages and Programming, 26th International Colloquium, ICALP 2007. Lecture notes in Computer Science, J. Weidermann, P. van Emde Boas & M. Nielsen, editors, 676–686. Springer-Verlag.

  • Wigderson A., Zuckerman D. (1993) Expanders that Beat the Eigenvalue Bound: Explicit Construction and Applications. Combinatorica 19: 245–251

    MathSciNet  MATH  Google Scholar 

  • Zuckerman D. (1997) Randomness-optimal oblivious sampling. Random Structures and Algorithms 11(4): 345–367

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Moshkovitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshkovitz, D. Low-degree test with polynomially small error. comput. complex. 26, 531–582 (2017). https://doi.org/10.1007/s00037-016-0149-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0149-4

Keywords

Subject classification

Navigation