Skip to main content
  • Original Article
  • Published:

Phosphorus cycling in primary and secondary seasonally dry tropical forests in Mexico

Cycle du phosphore dans les forêts primaires et secondaires tropicales à saison sèche du Mexique

Abstract

  • • Primary forests in the seasonally dry tropical regions of Mexico are disappearing under land-use pressure, creating a mosaic of secondary forests of different ages.

  • • In this study we measured the aboveground litterfall phosphorus (P) fluxes, litter-layer and soil P pools to compare the P cycles in primary and secondary seasonally dry tropical forests. Our hypothesis was that the previous agricultural land use of secondary forests would bring about a lower P flux in the litterfall, lower soil P pool, and higher nutrient resorption proficiency than in primary forests, as well as an increase of relative amounts of available P provided by the soil with forest aging.

  • • The expected litterfall P flux increase in the secondary forest following a previous agricultural land use did not occur. Phosphorus return to the soil by aboveground litterfall was unaffected by the succession stage of the forest. In addition, the total soil P pool did not change with forest age. However, available soil P (bicarbonate P-inorganic and P-organic pools) and hydroxide inorganic P pools were higher in primary than in secondary forest soils. Phosphorus concentration in litterfall increased significantly with forest age, suggesting that P is cycled more efficiently (by a higher nutrient resorption proficiency) when soil available P is less abundant. Despite these differences among forests, the results of our study gave evidence that P requirements by plants in primary and secondary forests are sufficiently met by the accumulation of dissolved (water extractable) P in the forest floor during the dry season and by soil bicarbonate-P pools.

  • • Our study on the effects of land cover change on P cycling, following the discontinuation of agricultural practices, leads to the conclusion that this ecosystem P dynamics will vary depending on the successional stage of the forests, and is strongly influenced by the seasonal rainfall pattern which determines plant-available P.

Résumé

  • • Les forêts primaires dans les régions tropicales à saison sèche du Mexique sont en train de disparaître sous la pression de l’utilisation agricole des terres, créant une mosaïque de forêts secondaires d’âges différents.

  • • Dans cette étude, nous avons mesuré les flux de phosphore (P) de la litière au-dessus du sol, de l’horizon de litière et les pools de phosphore P du sol, pour comparer les cycles de P dans les forêts primaires et secondaires tropicales à saison sèche. Notre hypothèse est que l’exploitation agricole précédente des forêts secondaires devrait aboutir à un flux plus faible de P dans la litière, à un plus faible pool de P du sol, et à une résorption plus élevée des éléments nutritifs que dans les forêts primaires, ainsi qu’une augmentation des quantités relatives de P disponibles fournies par le sol avec le vieillissement de la forêt.

  • • L’accroissement attendu du flux de P par la litière dans la forêt secondaire, suite à un précédent usage agricole des terres, n’a pas eu lieu. Le retour du phosphore à la surface du sol par la litière n’a pas été affecté par la succession des stades de la forêt. En outre, le pool total de phosphore n’a pas changé avec l’âge des forêts. Toutefois, P disponible dans le sol (pools de bicarbonate P-inorganique et P-organique) et les pools d’hydroxyde de P inorganique étaient plus élevés dans les sols forestiers des forêts primaires que dans les sols forestiers des forêts secondaires. La concentration de phosphore dans la litière a augmenté de manière significative avec l’âge des forêts, ce qui suggère que P est recyclé de manière plus efficace (par une plus grande maîtrise de la résorption des éléments nutritifs) quand P disponible dans le sol est moins abondant. En dépit de ces différences entre les forêts, les résultats de notre étude ont donné la preuve que les exigences de P par les plants dans les forêts primaires et secondaires sont suffisamment remplies par l’accumulation ou la dissolution (extractibles par l’eau) de P dans la couverture du sol pendant la saison sèche et par le bicarbonate-P du sol.

  • • Notre étude sur les effets du changement de la couverture du sol sur le cycle de P, à la suite de l’abandon des pratiques agricoles, conduit à la conclusion que cette dynamique de P dans l’écosystème varie selon le stade de succession des forêts, et est fortement influencée par la pluviométrie saisonnière qui détermine le P disponible pour les plants.

Abbreviations

SDTF:

seasonally dry tropical forest

PMF:

primary forest

ESF:

early successional forest

MSF:

mid-successional forest

LSF:

late-successional forest

References

  • Brown S. and Lugo A.E., 1990. Tropical secondary forests. J. Trop. Ecol. 6: 1–32.

    Article  Google Scholar 

  • Campo J. and Dirzo R., 2003. Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatán, Mexico. J. Trop. Ecol. 19: 525–530.

    Article  Google Scholar 

  • Campo J. and Vázquez-Yanes C., 2004. Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems 7: 311–319.

    Article  CAS  Google Scholar 

  • Campo J., Jaramillo V.J., and Maass J.M., 1998. Pulses of soil phosphorus availability in a Mexican tropical dry forest: effects of seasonality and level of wetting. Oecologia 115: 167–172.

    Article  Google Scholar 

  • Campo J., Maass J.M., Jaramillo V.J., and Martínez-Yrízar A., 2000. Calcium, potassium, and magnesium cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 49: 21–36.

    Article  CAS  Google Scholar 

  • Campo J., Maass M., Jaramillo V.J., Martínez- Yrízar A., and Sarukhán J., 2001. Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53: 161–179.

    Article  CAS  Google Scholar 

  • Campo J., Valencia M.G., and Solís E., 2007. Litter N and P dynamics in two secondary tropical dry forests after relaxation of nutrient availability constraints. For. Ecol. Manage. 252: 33–40.

    Article  Google Scholar 

  • Cárdenas I. and Campo J., 2007. Foliar nitrogen and phosphorus resorption and decomposition in the nitrogen-fixing tree Lysiloma microphyllum in primary and secondary seasonally dry tropical forests in Mexico. J. Trop. Ecol. 23: 107–113.

    Article  Google Scholar 

  • Cross A.F. and Schlesinger W.H., 1995. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64: 197–214.

    Article  CAS  Google Scholar 

  • Elliot E.T., Heil J.W., Kelly E.F., and Monger H.C., 1999. Soil structural and other physical properties. In: Robertson G.P., Coleman D.C., Bledsoe C.S. and Sollins P. (Eds.), Standard soil methods for long-term ecological research, Oxford University Press, New York, pp. 74–85.

    Google Scholar 

  • Giardina C.P., Sanford R.L. Jr, and Dockersmith I.C., 2000. Changes in soil phosphorus and nitrogen during slash- and-burn clearing of a dry tropical forest. Soil Sci. Soc. Am. J. 64: 399–405.

    Article  CAS  Google Scholar 

  • Harrington R.A., Fownes J.H., and Vitousek P.M., 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4: 646–657.

    Article  CAS  Google Scholar 

  • Hedley M.J., Steward J.W.B., and Chauhan B.S., 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46: 970–976.

    Article  CAS  Google Scholar 

  • Johnson A.H., Frizano J., and Vann D.R., 2003. Biogeochemical implications of labile phosphorus in forests soil determined by the Hedley fractionation procedure. Oecologia 135: 487–499.

    PubMed  Google Scholar 

  • Killingbeck K.T., 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727.

    Article  Google Scholar 

  • Kundu D.K., 1990. Tropical leaf-litter nutrients. Nature 344: 203.

    Article  Google Scholar 

  • Lugo A.E. and Murphy P.G., 1986. Nutrient dynamics of a Puerto Rican subtropical dry forest. J. Trop. Ecol. 2: 55–72.

    Article  Google Scholar 

  • Maass J.M., 1995. Conversion of tropical dry forest to pasture and agriculture. In: Bullock S.H., Mooney H.A., and Medina E. (Eds.), Seasonally dry tropical forests, Cambridge University Press, Cambridge, pp. 399–422.

    Chapter  Google Scholar 

  • McLaughlan K., 2006. The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9: 1364–1382.

    Article  Google Scholar 

  • Mo J., Fang H., Zhu W., Zhou G., Lu X., and Fang Y., 2008. Decomposition responses of pine (Pinus masoniana) needles with two different nutrient-status to N deposition in a tropical pine plantation in southern China. Ann. For. Sci. 65: 405.

    Article  Google Scholar 

  • Mooney H.A., Bullock S.H., and Medina E., 1995. Introduction. In: Bullock S.H., Mooney H.A., and Medina E. (Eds.), Seasonally Dry Tropical Forests, Cambridge University Press, Cambridge, pp. 1–8.

    Chapter  Google Scholar 

  • Murphy P.G. and Lugo A.E., 1986. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17: 67–88.

    Article  Google Scholar 

  • Read L. and Lawrence D., 2003. Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects. Ecosystems 6: 747–761.

    Article  CAS  Google Scholar 

  • Richter D.D., Allen H.L., Li J., Markewitz D., and Raikes J., 2006. Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 150: 259–271.

    Article  PubMed  Google Scholar 

  • Saynes V., Hidalgo C., Etchevers J.D., and Campo J.E., 2005. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl. Soil Ecol. 29: 282–289.

    Article  Google Scholar 

  • Singh J.S., Raghubanshi A.S., Singh R.S., and Srivastava S.C., 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338: 499–500.

    Article  Google Scholar 

  • Solís E. and Campo J., 2004. Soil N and P dynamics in two secondary tropical dry forests after fertilization. For. Ecol. Manage. 195: 409–418.

    Article  Google Scholar 

  • Vitousek P.M., 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65: 285–298.

    Article  CAS  Google Scholar 

  • Vogt K.A., Grier C.C., and Vogt D.J., 1986. Production, turnover, and nutrient dynamics of aboveground and below ground detritus of world forests. Adv. Ecol. Res. 15: 303–377.

    Article  Google Scholar 

  • Waring R.H. and Running S.W., 1998. Forest ecosystems: Analysis at multiple scales, Academic Press, San Diego, 370 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Campo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdespino, P., Romualdo, R., Cadenazzi, L. et al. Phosphorus cycling in primary and secondary seasonally dry tropical forests in Mexico. Ann. For. Sci. 66, 107 (2009). https://doi.org/10.1051/forest:2008075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008075

Keywords

Mots-clés