Skip to main content
Log in

Population monotonic allocation schemes for games with externalities

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

This paper provides conditions for a game with externalities to have a population monotonic allocation scheme (PMAS). We observe that the notion of convexity defined by Hafalir [Games Econ Behav 61:242–258, 2007] does not guarantee the existence of a PMAS in the presence of externalities. We introduce a new notion of convexity and show that while our convexity is not a stronger condition than Hafalir’s [Games Econ Behav 61:242–258, 2007] , it is a sufficient condition for a game to have a PMAS. Moreover, we show that the Aumann-Drèze value, which is defined for games with coalition structures, explicitly constructs a PMAS. In addition, we offer two necessary and sufficient conditions to guarantee a PMAS in the presence of externalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Albizuri et al. (2005), Bolger (1989), de de Clippel and Serrano (2008), Macho-Stadler et al. (2007, 2010), Myerson (1977), and Pham Do and Norde (2007) propose and axiomatically characterize their value concepts to include the effects of externalities. Dutta et al. (2010) generalize the potential function and characterize their value concept by extending Hart and Mas-Colell (1989)’s reduced game consistency.

  2. Kóczy (2007) proposes recursive optimism and pessimism and defines the core for games with externalities. Abe (2017) provides a characterization result by extending consistency properties. Abe and Funaki (2017) analyze the core from the viewpoint of the Bondareva-Shapley condition (Bondareva 1963; Shapley 1967).

  3. Grafe et al. (1998) study externality games. Note that their externality games are different from our games with externalities. Their game is a coalition function form game, whereas ours is a partition function form game.

  4. The core for games without externalities, w, is given by \(Core(w)=\{x\in \mathbb {R}^N| \sum _{j\in N}x_j= w(N),\ \sum _{j\in S}x_j\ge w(S)\text { for any } S\subseteq N\}.\)

  5. An extension of superadditivity is not sufficient for the grand coalition to be efficient in the presence of externalities. See Example 1 of Hafalir (2007). We elaborate the plurality of the core for games with externalities in Sect. 3.2.

  6. More specifically, \(Core^{g}(v)\) is nonempty if the rule g is the pessimistic rule or the singleton rule. However, it can be empty if g is the merging rule, the optimistic rule, or the max rule. For the definitions, see Hafalir (2007).

  7. In many preceding papers, it is expectation formation rules g given as (8) that play a central role to establish a connection between games with externalities and games without externalities. However, in this paper, we can use f instead of g since we connect a game with externalities to a game with a coalition structure (without externalities). This allows us to consider \({\mathcal {P}}\) as given and use f.

  8. Note that \(v^*\) is a TU game, namely, a game without externalities. By convention, we omit \({\mathcal {P}}\) from \(v^*_{\mathcal {P}}\) and simply use \((v^*,{\mathcal {P}})\) instead of \((v_{\mathcal {P}}^*,{\mathcal {P}})\) to denote a game with coalition structure. Function \(v^*\) can depend on \({\mathcal {P}}\).

  9. Çiftçi et al. (2010) propose the notion of population monotonic path schemes for games without externalities. They show that the Shapley allocation path is population monotonic if a game is simple. Simple games play a central role in their results.

  10. Sprumont (1990)’s approach is to decompose a (coalition function form) game into an additive game, dictator games, and a zero-normalized game. Then, a zero-normalized game is furthermore decomposed into some simple monotonic veto-controlled games (see Theorem 1 and the Corollary to Theorem 1 of Sprumont (1990)). We note that an additive game is also composed of some simple monotonic veto-controlled games.

References

  • Abe T (2017) Consistency and the core in games with externalities. Int J Game Theory 47:133–154

    Article  Google Scholar 

  • Abe T (2018) Stable coalition structures in symmetric majority games: a coincidence between myopia and farsightedness. Theory Decis 85:353–374

    Article  Google Scholar 

  • Abe T, Funaki Y (2017) The non-emptiness of the core of a partition function form game. Int J Game Theory 46:715–736

    Article  Google Scholar 

  • Albizuri MJ, Arin J, Rubio J (2005) An axiom system for a value for games in partition function form. Int Game Theory Rev 7:63–72

    Article  Google Scholar 

  • Aumann RJ, Drèze JH (1974) Cooperative games with coalition structures. Int J Game Theory 3:217–237

    Article  Google Scholar 

  • Bloch F, van den Nouweland A (2014) Expectation formation rules and the core of partition function games. Games Econ Behav 88:339–353

    Article  Google Scholar 

  • Bolger EM (1989) A set of axioms for a value for partition function games. Int J Game Theory 18:37–44

    Article  Google Scholar 

  • Bondareva ON (1963) Some applications of linear programming methods to the theory of cooperative games (in Russian). Probl Kibernetiki 10:119–139

    Google Scholar 

  • Çiftçi B, Borm P, Hamers H (2010) Population monotonic path schemes for simple games. Theory Decis 69:205–218

    Article  Google Scholar 

  • de Clippel G, Serrano R (2008) Marginal contributions and externalities in the value. Econometrica 76:1413–1436

    Article  Google Scholar 

  • Dutta B, Ehlers L, Kar A (2010) Externalities, potential, value and consistency. J Econ Theory 145:2380–2411

    Article  Google Scholar 

  • Gillies DB (1953) Some theorems on games. Dissertation, Department of Mathematics, Princeton University,

  • Grafe F, Inarra E, Zarzuelo JM (1998) Population monotonic allocation schemes on externality games. Math Methods Oper Res 48:71–80

    Article  Google Scholar 

  • Hafalir IE (2007) Efficiency in coalition games with externalities. Games Econ Behav 61:242–258

    Article  Google Scholar 

  • Hart S, Mas-Colell A (1989) Potential, value, and consistency. Econometrica 57:589–614

    Article  Google Scholar 

  • Ichiishi T (1981) Super-modularity: applications to convex games and to the greedy algorithm for LP. J Econ Theory 25:283–286

    Article  Google Scholar 

  • Kóczy L (2007) A recursive core for partition function form games. Theory Decis 63:41–51

    Article  Google Scholar 

  • Kóczy L (2009) Sequential coalition formation and the core in the presence of externalities. Games Econ Behav 66:559–565

    Article  Google Scholar 

  • Kóczy L, Lauwers L (2004) The coalition structure core is accessible. Games Econ Behav 48:86–93

    Article  Google Scholar 

  • Macho-Stadler I, Pérez-Castrillo D, Wettstein D (2007) Sharing the surplus: an extension of the Shapley value for environments with externalities. J Econ Theory 135:339–356

    Article  Google Scholar 

  • Macho-Stadler I, Pérez-Castrillo D, Wettstein D (2010) Dividends and weighted values in games with externalities. Int J Game Theory 39:177–184

    Article  Google Scholar 

  • Myerson RB (1977) Values of games in partition function form. Int J Game Theory 6:23–31

    Article  Google Scholar 

  • Pham Do KH, Norde H (2007) The Shapley value for partition function form games. Int Game Theory Rev 9:353–360

    Article  Google Scholar 

  • Shapley L (1953) A value for n-person games. Contrib Theory Games 2:307–317

    Google Scholar 

  • Shapley L (1967) On balanced sets and cores. Naval Res Logist Q 14:453–460

    Article  Google Scholar 

  • Shapley L (1971) Cores of convex games. Int J Game Theory 1:11–26

    Article  Google Scholar 

  • Sprumont Y (1990) Population monotonic allocation schemes for cooperative games with transferable utility. Games Econ Behav 2:378–394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Abe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author would like to thank the anonymous reviewers for their helpful suggestions and comments. The author appreciates René van den Brink, Yukihiko Funaki, and the seminar participants in SAET 2018 at Taipei and in JEA meeting 2018 at University of Hyogo for their advices. The author acknowledges financial support from the Japan Society for the Promotion of Science (April, 2016–March, 2019).

Appendix

Appendix

Through the appendix, for notational simplicity, we omit v and \(*\), and use \(f(S,{\mathcal {P}})\) to denote \(f^*(v,S,{\mathcal {P}})\) given by (6). Similarly, we write g(S) instead of g(vS) for any rule g given by (8).

1.1 Proof of Proposition 1

Proof

We show that \(ASMC^\sigma (v)\) satisfies (i) coalitonal efficiency and (ii) population monotonicity.

(i) For any \({\mathcal {P}}\in \varPi (N)\) and \(S\in {\mathcal {P}}\), let \(\{j_1,\ldots ,j_l,\ldots ,j_{l'},\ldots ,j_{|S|}\}=S\) and \(l<l'\iff \sigma (j_l)<\sigma (j_{l'})\). We have

$$\begin{aligned}&\sum _{j\in S}ASMC^{\sigma ,{\mathcal {P}}}_j(v) \overset{(5)}{=} \sum _{k=1}^{|S|} \left[ v(L^{\sigma ,{\mathcal {P}}}(j_k)\cup \{j_k\}, f(L^{\sigma ,{\mathcal {P}}}(j_k)\cup \{j_k\},{\mathcal {P}}))\right. \\&\qquad - \left. v(L^{\sigma ,{\mathcal {P}}}(j_k), f(L^{\sigma ,{\mathcal {P}}}(j_k),{\mathcal {P}}))\right] \\&\quad = v(\{j_1\}, f(\{j_1\},{\mathcal {P}})) - 0 \\&\qquad +\,v(\{j_1,j_2\}, f(\{j_1,j_2\},{\mathcal {P}})) - v(\{j_1\}, f(\{j_1\},{\mathcal {P}}))\\&\qquad +\cdots +\\&\qquad v(S, f(S,{\mathcal {P}})) - v(\{j_1,\ldots ,j_{|S|-1}\}, f(\{j_1,\ldots ,j_{|S|-1}\},{\mathcal {P}}))\\&\quad = v(S, f(S,{\mathcal {P}}))\\&\quad \overset{(6)}{=} v(S, {\mathcal {P}}). \end{aligned}$$

(ii) Let \(i\in N\) and \(S,T\subseteq N\) with \(i\in S\subsetneq T\). We define and . It suffices to show

$$\begin{aligned} ASMC^{\sigma ,\mathcal {Q}_*}_{i} \ge ASMC^{\sigma ,{\mathcal {P}}^*}_{i}. \end{aligned}$$

We focus on \(ASMC^{\sigma ,\mathcal {Q}_*}_{i}\).

$$\begin{aligned} ASMC^{\sigma ,\mathcal {Q}_*}_{i} = v(L^{\sigma ,\mathcal {Q}_*}(i)\cup \{i\}, f(L^{\sigma ,\mathcal {Q}_*}(i)\cup \{i\},\mathcal {Q}_*)) - v(L^{\sigma ,\mathcal {Q}_*}(i), f(L^{\sigma ,\mathcal {Q}_*}(i),\mathcal {Q}_*)). \end{aligned}$$
(13)

For simplicity, let \(\tilde{L}:= L^{\sigma ,\mathcal {Q}_*}(i)\). Note that \(\tilde{L}= L^{\sigma ,\mathcal {Q}_*}(i)= L^{\sigma }(i)\cap \mathcal {Q}_*(i)= L^{\sigma }(i)\cap T\). Let \(T{\setminus } S=\{j_1,\ldots ,j_m\}\). We have

$$\begin{aligned}&(\text {}13) = v(\tilde{L}\cup \{i\}, f(\tilde{L}\cup \{i\},\mathcal {Q}_*)) - v(\tilde{L}, f(\tilde{L},\mathcal {Q}_*))\\&\quad \overset{(2)}{\ge } v(\tilde{L}\cup \{i\}, min) - v(\tilde{L}, max)\\&\quad \overset{(3)}{\ge } v((\tilde{L}{\setminus } \{j_1\})\cup \{i\}, max) - v(\tilde{L}{\setminus }\{j_1\}, max)\\&\quad \ge v((\tilde{L}{\setminus } \{j_1\})\cup \{i\}, min) - v(\tilde{L}{\setminus }\{j_1\}, max)\\&\quad \overset{(3)}{\ge } v((\tilde{L}{\setminus } \{j_1,j_2\})\cup \{i\}, max) - v(\tilde{L}{\setminus }\{j_1,j_2\}, max)\\&\quad \ge v((\tilde{L}{\setminus } \{j_1,j_2\})\cup \{i\}, min) - v(\tilde{L}{\setminus }\{j_1,j_2\}, max)\\&\quad \ge \cdots \\&\quad \overset{(3)}{\ge } v((\tilde{L}{\setminus } \{j_1,\ldots ,j_m\})\cup \{i\}, max) - v(\tilde{L}{\setminus }\{j_1,\ldots ,j_m\}, max)\\&\quad = v((L^{\sigma }(i)\cap S)\cup \{i\}, max) - v(L^{\sigma }(i)\cap S, max)\\&\quad \ge v((L^{\sigma }(i)\cap S)\cup \{i\}, f((L^{\sigma }(i)\cap S)\cup \{i\},\,P^*)) - v(L^{\sigma }(i)\cap S, max)\\&\quad \overset{(6)}{=} v((L^{\sigma }(i)\cap S)\cup \{i\}, f((L^{\sigma }(i)\cap S)\cup \{i\},{\mathcal {P}}^*)) - v(L^{\sigma }(i)\cap S, f(L^{\sigma }(i)\cap S,{\mathcal {P}}^*)), \end{aligned}$$

where the last equality holds because \(S\in {\mathcal {P}}^*\) and \(L^{\sigma }(i)\cap S \ne S\) imply \(L^{\sigma }(i)\cap S \not \in {\mathcal {P}}^*\). Now, in view of \(S={\mathcal {P}}^*(i)\), we have \(L^{\sigma }(i)\cap S= L^{\sigma ,{\mathcal {P}}^*}(i)\). Hence, the final equality results in

$$\begin{aligned} v(L^{\sigma ,{\mathcal {P}}^*}(i)\cup \{i\}, f(L^{\sigma ,{\mathcal {P}}^*}(i)\cup \{i\},{\mathcal {P}}^*)) - v(L^{\sigma ,{\mathcal {P}}^*}(i), f(L^{\sigma ,{\mathcal {P}}^*}(i),{\mathcal {P}}^*))=ASMC^{\sigma ,{\mathcal {P}}^*}_{i}. \end{aligned}$$

This completes the proof. \(\square \)

1.2 Proof of Proposition 2

Proof

Fix \(i \in N\) and \({\mathcal {P}}\in \varPi (N)\). We use \(\tau \) to denote a permutation of \({\mathcal {P}}(i)\), namely, \(\tau \in \varPsi ({\mathcal {P}}(i))\). For each \(\tau \), we can find \((n-|{\mathcal {P}}(i)|)!\frac{n!}{|{\mathcal {P}}(i)|!\cdot (n-|{\mathcal {P}}(i)|)!}\) permutations \(\sigma \) of N satisfying \(\sigma (j)<\sigma (j')\iff \tau (j)<\tau (j')\) for \(j,j'\in {\mathcal {P}}(i)\). Hence, we have

$$\begin{aligned}&\frac{1}{n!}\sum _{\sigma \in \varPsi (N)}ASMC^{\sigma ,{\mathcal {P}}}_i(v) \nonumber \\&\quad \overset{(5)}{=}\frac{1}{n!}\sum _{\sigma \in \varPsi (N)}v(L^{\sigma ,{\mathcal {P}}}(i)\cup \{i\}, f(L^{\sigma ,{\mathcal {P}}}(i)\cup \{i\},{\mathcal {P}}))-v(L^{\sigma ,{\mathcal {P}}}(i), f(L^{\sigma ,{\mathcal {P}}}(i),{\mathcal {P}})) \nonumber \\&\quad =\frac{1}{n!}\frac{(n-|{\mathcal {P}}(i)|)!\cdot n!}{|{\mathcal {P}}(i)|!\cdot (n-|{\mathcal {P}}(i)|)!} \sum _{\tau \in \varPsi ({\mathcal {P}}(i))}v(L^{\tau }(i)\cup \{i\}, f(L^{\tau }(i)\cup \{i\},{\mathcal {P}}))-v(L^{\tau }(i), f(L^{\tau }(i),{\mathcal {P}})) \nonumber \\&\quad =\frac{1}{|{\mathcal {P}}(i)|!} \sum _{\tau \in \varPsi ({\mathcal {P}}(i))}v(L^{\tau }(i)\cup \{i\}, f(L^{\tau }(i)\cup \{i\},{\mathcal {P}}))-v(L^{\tau }(i), f(L^{\tau }(i),{\mathcal {P}})) \end{aligned}$$
(14)

where \(L^{\tau }(i)\) is the set of predecessors of i within \({\mathcal {P}}(i)\) with respect to \(\tau \), \(L^\tau (i)=\{j\in {\mathcal {P}}(i)| \tau (j)<\tau (i)\}\). In view of (11), we have

$$\begin{aligned} (14)= & {} \frac{1}{|{\mathcal {P}}(i)|!} \sum _{\tau \in \varPsi ({\mathcal {P}}(i))}v^*(L^{\tau }(i)\cup \{i\})-v^*(L^{\tau }(i)). \end{aligned}$$
(15)

Let \(v^*|_{{\mathcal {P}}(i)}\) be the subgame of \(v^*\) with the player set \({\mathcal {P}}(i)\). Since both \(L^{\tau }(i)\cup \{i\}\) and \(L^{\tau }(i)\) are subsets of \({\mathcal {P}}(i)\), we obtain

$$\begin{aligned}&(15) = Sh_i({\mathcal {P}}(i), v^*|_{{\mathcal {P}}(i)})\\&\quad \overset{(10)}{=}AD_i(v^*,{\mathcal {P}}). \end{aligned}$$

\(\square \)

1.3 Proof of Proposition 3

Proof

We show that if v satisfies IOC, then \(Sh^g(v)\in Core^{opt}(v)\) for any g.

Let \(S\subseteq N\) (\(S\ne \emptyset \)). We have

$$\begin{aligned}&\sum _{j\in S}Sh^g_j(v) \overset{(12)}{=}\sum _{j\in S}Sh_j(v^g) \nonumber \\&\quad =\frac{1}{n!}\sum _{j\in S}\sum _{\sigma \in \varPsi (N)}\left[ v^g(L^\sigma (j)\cup \{j\})-v^g(L^\sigma (j))\right] \nonumber \\&\quad =\frac{1}{n!}\sum _{\sigma \in \varPsi (N)}\sum _{j\in S}\left[ v^g(L^\sigma (j)\cup \{j\})-v^g(L^\sigma (j))\right] . \end{aligned}$$
(16)

For the term parenthesized with \([\cdot ]\), we have

$$\begin{aligned}&v^g(L^\sigma (j)\cup \{j\})-v^g(L^\sigma (j)) =v(L^\sigma (j)\cup \{j\}, g(L^\sigma (j)\cup \{j\}) )-v(L^\sigma (j), g(L^\sigma (j)))\\&\quad \ge v(L^\sigma (j)\cup \{j\}, min )-v(L^\sigma (j), max)\\&\quad \overset{(3)}{\ge }v((L^\sigma (j)\cap S)\cup \{j\}, max )-v(L^\sigma (j)\cap S, max). \end{aligned}$$

Hence, we have

$$\begin{aligned} (16)\ge & {} \frac{1}{n!}\sum _{\sigma \in \varPsi (N)}\sum _{j\in S}\left[ v((L^\sigma (j)\cap S)\cup \{j\},max)-v(L^\sigma (j)\cap S,max)\right] \\= & {} \frac{1}{n!}\sum _{\sigma \in \varPsi (N)}\sum _{k=1}^{|S|}\left[ v((L^\sigma (j_k)\cap S)\cup \{j_k\},max)-v(L^\sigma (j_k)\cap S,max)\right] \\= & {} \frac{1}{n!}\sum _{\sigma \in \varPsi (N)}(S,max)\\= & {} v(S,max). \end{aligned}$$

\(\square \)

1.4 Proof of Proposition 4

Proof

If Let \(i\in N\) be a veto player and \(v^i\) be a simple monotonic game with veto player i. For any \({\mathcal {P}}\in \varPi (N)\) and \(j\in N\), define

$$\begin{aligned} x^{{\mathcal {P}}}_j= \left\{ \begin{array}{ll} v^{i}({\mathcal {P}}(j),{\mathcal {P}}) &{}\quad \text {if}\ \ j=i, \\ 0 &{} \quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$

This constructs a PMAS. Moreover, for any two games v and \(v'\), if x is a PMAS of v and y is a PMAS of \(v'\), then \(ax+by\) is a PMAS of \(av+bv'\) for any nonnegative numbers a and b.

Only if Let v be a nonnegative game with a PMAS. Let x be the PMAS. Clearly, v is monotonic. For any player \(j\in N\), we define \(v^j\) as follows: for any \((S,{\mathcal {P}})\in EC(N)\),

$$\begin{aligned} v^j(S,{\mathcal {P}})= \left\{ \begin{array}{ll} x^{\mathcal {P}}_j &{}\quad \text {if}\ \ S={\mathcal {P}}(j) \ (\iff j\in S), \\ 0 &{}\quad \text {otherwise}. \\ \end{array} \right. \end{aligned}$$
(17)

Since x is a PMAS, \(v^j\) is monotonic. For any \((S,{\mathcal {P}})\in EC(N)\), we have

$$\begin{aligned} v(S,{\mathcal {P}}) \overset{\text {(i) of Def }1}{=} \sum _{j\in S}x_j^{\mathcal {P}}\overset{(17)}{=} \sum _{j\in S}v^j(S,{\mathcal {P}}) \overset{(17)}{=} \sum _{j\in N}v^j(S,{\mathcal {P}}), \end{aligned}$$

equivalently,

$$\begin{aligned} v=\sum _{j\in N}v^j. \end{aligned}$$
(18)

We fix a player \(i\in N\) and define \(\varPi ^i_{++}\) as the set of partitions in which the worth of player i’s coalition is positive, formally, \(\varPi ^i_{++}=\{{\mathcal {P}}\in \varPi (N)| v^i({\mathcal {P}}(i),{\mathcal {P}}) >0\}\). For some \({\mathcal {P}},{\mathcal {P}}'\in \varPi ^i_{++}\), \(v^i({\mathcal {P}}(i),{\mathcal {P}})\) may be equal to \(v^i({\mathcal {P}}'(i),{\mathcal {P}}')\). We choose one from such partitions (if any) and define \(\widehat{\varPi }^i_{++}\subseteq \varPi ^i_{++}\). Hence, for any \({\mathcal {P}}\in \widehat{\varPi }^i_{++}\), we have \(v^i({\mathcal {P}}(i),{\mathcal {P}})>0\) and no \({\mathcal {P}}'\in \widehat{\varPi }^i_{++}\) satisfies \(v^i({\mathcal {P}}(i),{\mathcal {P}})= v^i({\mathcal {P}}'(i),{\mathcal {P}}')\). We define an ordering of partitions in \(\widehat{\varPi }^i_{++}\) as \({\mathcal {P}}_1,\ldots ,{\mathcal {P}}_m\), where \(v^i({\mathcal {P}}_k(i),{\mathcal {P}}_k)< v^i({\mathcal {P}}_{k+1}(i),{\mathcal {P}}_{k+1})\) for every k (\(1\le k\le K-1\)), and \(K=|\widehat{\varPi }^i_{++}|\). Note that \(|{\mathcal {P}}_k(i)|\le |{\mathcal {P}}_{k+1}(i)|\) follows from the monotonicity of \(v^i\).

Now, for every k (\(1\le k\le K\)), we define \(\lambda ^{i,{\mathcal {P}}_k}\) as follows:

$$\begin{aligned} \lambda ^{i,{\mathcal {P}}_1}= & {} v^i({\mathcal {P}}_1(i),{\mathcal {P}}_1),\\ \lambda ^{i,{\mathcal {P}}_2}= & {} v^i({\mathcal {P}}_2(i),{\mathcal {P}}_2)-v^i({\mathcal {P}}_1(i),{\mathcal {P}}_1),\\&\cdots&\\ \lambda ^{i,{\mathcal {P}}_k}= & {} v^i({\mathcal {P}}_k(i),{\mathcal {P}}_k)-v^i({\mathcal {P}}_{k-1}(i),{\mathcal {P}}_{k-1}),\\&\cdots&\\ \lambda ^{i,{\mathcal {P}}_K}= & {} v^i({\mathcal {P}}_K(i),{\mathcal {P}}_K)-v^i({\mathcal {P}}_{K-1}(i),{\mathcal {P}}_{K-1}). \end{aligned}$$

Moreover, we define \(v^{i,{\mathcal {P}}_k}\) as follows: setting \(u^{i,{\mathcal {P}}_0}=v^{i}\),

$$\begin{aligned}&v^{i,{\mathcal {P}}_1}(S,{\mathcal {P}})= \left\{ \begin{array}{ll} 1 &{} \quad \text {if}\ \ u^{i,{\mathcal {P}}_0}(S,{\mathcal {P}})>0, \\ 0 &{} \quad \text {otherwise}, \end{array}\right. u^{i,{\mathcal {P}}_1}=u^{i,{\mathcal {P}}_0}-v^{i,{\mathcal {P}}_1};\\&\cdots&\\&v^{i,{\mathcal {P}}_k}(S,{\mathcal {P}})= \left\{ \begin{array}{ll} 1 &{}\quad \text {if}\ \ u^{i,{\mathcal {P}}_{k-1}}(S,{\mathcal {P}})>0, \\ 0 &{} \quad \text {otherwise}, \end{array}\right. u^{i,{\mathcal {P}}_k}=u^{i,{\mathcal {P}}_{k-1}}-v^{i,{\mathcal {P}}_k};\\&\cdots&\\&v^{i,{\mathcal {P}}_K}(S,{\mathcal {P}})= \left\{ \begin{array}{ll} 1 &{} \quad \text {if}\ \ u^{i,{\mathcal {P}}_{K-1}}(S,{\mathcal {P}})>0, \\ 0 &{} \quad \text {otherwise}, \end{array}\right. u^{i,{\mathcal {P}}_K}=u^{i,{\mathcal {P}}_{K-1}}-v^{i,{\mathcal {P}}_K}. \end{aligned}$$

We obtain \(v^i=\sum _{k=1}^{K}\lambda ^{i,{\mathcal {P}}_k}v^{i,{\mathcal {P}}_k}\). By the construction of \(\lambda ^{i,{\mathcal {P}}_k}\), each \(\lambda ^{i,{\mathcal {P}}_k}\) is positive. Moreover, each \(v^{i,{\mathcal {P}}_k}\) is a simple monotonic veto-controlled game: simplicity follows from the construction, monotonicity from \(|{\mathcal {P}}_k(i)|\le |{\mathcal {P}}_{k+1}(i)|\) for any k (\(1\le k\le m-1\)), and i is a veto player because of (17). In view of (18), we have

$$\begin{aligned} v=\sum _{j\in N}\sum _{k=1}^{K}\lambda ^{j,{\mathcal {P}}_k}v^{j,{\mathcal {P}}_k}. \end{aligned}$$

This completes the proof. \(\square \)

1.5 Proof of Proposition 5

Proof

The proof consists of the following equivalent statements.

  1. 1.

    A nonnegative game v has a PMAS.

  2. 2.

    A nonnegative game v is a nonnegative linear combination of monotonic simple veto-controlled games \(v_1,\ldots ,v_M\).

  3. 3.

    For any \(\delta \) satisfying \(\delta \cdot v_m\le 0\) for any \(m=1,\ldots ,M\), we have \(\delta \cdot v\le 0\).

  4. 4.

    For any \(\delta \) satisfying \(\delta \cdot v_m\le 0\) for any \(m=1,\ldots ,M\) and \(\delta _{(N,\{N\})}=-1\), we have \(\delta \cdot v\le 0\).

  5. 5.

    For any extended vector of subbalanced weights \(\delta \),

    $$\begin{aligned} \sum _{(S,{\mathcal {P}})\in EC^*(N)}\delta _{(S,{\mathcal {P}})}v(S,{\mathcal {P}})\le v(N,\{N\}). \end{aligned}$$

In view of Proposition 4, (1) \(\Rightarrow \) (2) holds. For (1) \(\Leftarrow \) (2), using \(\varPi ^i_{++}\) instead of \(\widehat{\varPi }^i_{++}\) in the only if part of the proof of Proposition 4 results in nonnegative coefficients \(\lambda _1,\ldots ,\lambda _M\) for some natural number M.

The Minkowski-Farkas lemma implies (2) \(\Leftrightarrow \) (3). Statement (2) is formally written as follows: there exist nonnegative numbers \(\lambda _1,\ldots ,\lambda _M\) such that \(v=\sum _{m=1}^M \lambda _m v_m\). From the Minkowski-Farkas lemma, it follows that no \(\delta =(\delta _{(S,{\mathcal {P}})})_{(S,{\mathcal {P}})\in EC(N)}\) satisfies both \(\delta \cdot v<0\) and \(\delta \cdot v_m\ge 0\) for any \(m=1,\ldots ,M\). Hence, for any \(\delta \) satisfying \(\delta \cdot v_m\ge 0\) for any \(m=1,\ldots ,M\), we have \(\delta \cdot v\ge 0\), which is equivalent to (3) by replacing \(\ge \) with \(\le \).

Clearly, (3) implies (4). However, the opposite direction is not necessarily obvious. The proof of Claim (3) \(\Leftarrow \) (4) is provided below.

For the equivalence between (4) and (5), \(\delta \) satisfies \(\delta \cdot v_m\le 0\) for any \(m=1,\ldots ,M\) and \(\delta _{(N,\{N\})}=-1\) if and only if for any \(i\in N\), \(S\subsetneq N\) with \(i\in S\), and \({\mathscr {P}}\subseteq \{{\mathcal {P}}\in \varPi (N){\setminus } \{N\}| S\in {\mathcal {P}}\}\),

$$\begin{aligned} \sum _{(T,\mathcal {Q})\in EC^*(N)}\delta _{(T,\mathcal {Q})}\chi ^{i,S,{\mathscr {P}}}(T,\mathcal {Q})\le 1. \end{aligned}$$

This completes the proof.

\(\textit{Claim (3)} \Leftarrow \textit{(4)}\). We prove this by contraposition. We assume that there exists \(\delta \) such that

$$\begin{aligned}&\delta \cdot v_m\le 0\text { for any }m=1,\ldots ,M \text {, and } \end{aligned}$$
(19)
$$\begin{aligned}&\delta \cdot v> 0. \end{aligned}$$
(20)

We construct \(\delta '\) satisfying (i) \(\delta '\cdot v_m\le 0\) for any \(m=1,\ldots ,M\), (ii) \(\delta '\cdot v> 0\), and (iii) \(\delta '_{(N,\{N\})}=-1\).

Case 1: \(\delta _{(N,\{N\})}\ne 0\). We define \(\delta '_{(S,{\mathcal {P}})}=-\frac{1}{\delta _{(N,\{N\})}}\delta _{(S,{\mathcal {P}})}\) for every \((S,{\mathcal {P}})\in EC(N)\). Note that \(\delta _{(N,\{N\})}< 0\) because, among the games \(v_1,\ldots ,v_M\), we can find the game \(v_{m^*}\) such that \(v_{m^*}(S,{\mathcal {P}})=0\) for \((S,{\mathcal {P}})\ne (N,\{N\})\) and \(v_{m^*}(N,\{N\})=1\), and (19) implies \(\delta \cdot v_{m^*}=\delta _{(N,\{N\})}\le 0\). Since \(\delta _{(N,\{N\})}\ne 0\), we have

$$\begin{aligned} \delta _{(N,\{N\})}< 0. \end{aligned}$$
(21)

Hence, \(\delta '\) satisfies (i) because for any \(m=1,\ldots ,M\),

$$\begin{aligned} \delta '\cdot v_m= -\frac{1}{\delta _{(N,\{N\})}}\delta \cdot v_m \overset{(19),(21)}{\le } 0, \end{aligned}$$

(ii) because

$$\begin{aligned} \delta '\cdot v= -\frac{1}{\delta _{(N,\{N\})}}\delta \cdot v \overset{(20),(21)}{>} 0, \end{aligned}$$

and (iii) because \(\delta '_{(N,\{N\})}=-\frac{1}{\delta _{(N,\{N\})}}\delta _{(N,\{N\})}=-1\).

Case 2: \(\delta _{(N,\{N\})}= 0\). The following construction is a slight variant of Sprumont (1990)’s. For simplicity, let \((\delta \cdot v)^*=\sum _{(T,\mathcal {Q})\in EC^*(N)}\delta _{(T,\mathcal {Q})}v(T,\mathcal {Q})\) for any \(\delta \) and v. Note that

$$\begin{aligned}&(\delta \cdot v_m)^*= \delta \cdot v_m - \delta _{(N,\{N\})}v_m(N,\{N\})= \delta \cdot v_m \overset{19}{\le }0\text { for any } m=1,\ldots ,M, \end{aligned}$$
(22)
$$\begin{aligned}&(\delta \cdot v)^*= \delta \cdot v - \delta _{(N,\{N\})}v(N,\{N\})= \delta \cdot v \overset{(20)}{>}0. \end{aligned}$$
(23)

We define

$$\begin{aligned} \delta '_{(S,{\mathcal {P}})}=\left( \frac{|v(N,\{N\})|}{(\delta \cdot v)^*} +\epsilon \right) \delta _{(S,{\mathcal {P}})} \text { for every }(S,{\mathcal {P}})\in EC^*(N), \end{aligned}$$
(24)

where \(\epsilon >0\), and define \(\delta '_{(N,\{N\})}= -1\). Hence, \(\delta '\) satisfies (i) because for any \(m=1,\ldots ,M\), we have

$$\begin{aligned}&\delta '\cdot v_m= (\delta '\cdot v_m)^* + \delta '_{(N,\{N\})}v_m(N,\{N\}) \overset{24}{=} \left( \frac{|v(N,\{N\})|}{(\delta \cdot v)^*} +\epsilon \right) (\delta \cdot v_m)^* -1\\&\quad \overset{(22),(23)}{\le } 0-1, \end{aligned}$$

(ii) because

$$\begin{aligned}&\delta '\cdot v= (\delta '\cdot v)^* + \delta '_{(N,\{N\})}v(N,\{N\}) \overset{(24)}{=} \left( \frac{|v(N,\{N\})|}{(\delta \cdot v)^*} +\epsilon \right) (\delta \cdot v)^* -v(N,\{N\})\\&\quad = |v(N,\{N\})| + \epsilon (\delta \cdot v)^* -v(N,\{N\})\\&\quad \overset{(23)}{>} 0, \end{aligned}$$

and (iii) because of the construction. This completes the proof of Claim (3) \(\Leftarrow \) (4). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, T. Population monotonic allocation schemes for games with externalities. Int J Game Theory 49, 97–117 (2020). https://doi.org/10.1007/s00182-019-00675-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-019-00675-3

Keywords

Navigation