Skip to main content
Log in

Empirical Mode Decomposition and Temporal Convolutional Networks for Remaining Useful Life Estimation

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Remaining useful life (RUL) prediction plays an important role in guaranteeing safe operation and reducing maintenance cost in modern industry. In this paper, we present a novel deep learning method for RUL estimation based on time empirical mode decomposition (EMD) and temporal convolutional networks (TCN). The proposed framework can effectively reveal the non-stationary characteristics of bearing degradation signals and acquire time-series degradation signals which namely intrinsic mode functions through empirical mode decomposition. Furthermore, the feature information is used as the input to convolution layer and trained by TCN to predict remaining useful life. The proposed EMD–TCN model structure maintains a superior result compared to several state-of-the-art convolutional algorithms on public data sets. Experimental results show that the average score of EMD–TCN model is improved by 10–20% than traditional convolutional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Heng, A., Tan, A.C., Mathew, J., Montgomery, N., Banjevic, D., Jardine, A.K.: Intelligent condition-based prediction of machinery reliability. Mech. Syst. Signal Process. 23(5), 1600–1614 (2009)

    Article  Google Scholar 

  2. Zhang, J., Jiang, N., Li, H., Li, N.: Online health assessment of wind turbine based on operational condition recognition. Trans. Inst. Meas. Control. 41(10), 2970–2981 (2019)

    Article  Google Scholar 

  3. Fan, M., Zeng, Z., Zio, E., Kang, R., Chen, Y.: A sequential bayesian approach for remaining useful life prediction of dependent competing failure processes. IEEE Trans. Reliab. 68(1), 317–329 (2018)

    Article  Google Scholar 

  4. Khorasgani, H., Kulkarni, C., Biswas, G., Celaya, J.R., Goebel, K.: Degredation modeling and remaining useful life prediction of electrolytic capacitors under thermal overstress condition using particle filters. In: Annual Conference of the Prognostics and Health Management Society (PHM’13) (2013)

  5. Zheng, Z., Podobnik, B., Feng, L., Li, B.: Changes in cross-correlations as an indicator for systemic risk. Sci Rep 2, 888 (2012)

    Article  Google Scholar 

  6. Zhang, C., Hong, G.S., Xu, H., Tan, K.C., Zhou, J.H., Chan, H.L., Li, H.: A data-driven prognostics framework for tool remaining useful life estimation in tool condition monitoring. In 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2017)

  7. Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H.: Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    Article  MathSciNet  Google Scholar 

  8. Fu, D., Zheng, Z., Gui, J., Xiao, R., Huang, G., Li, Y.: Development of a fuel management model for a multi-source district heating system under multi-uncertainty and multi-dimensional constraints. Energy Convers. Manag. 153, 243–256 (2017)

    Article  Google Scholar 

  9. Li, X., Ding, Q., Sun, J.-Q.: Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 172, 1–11 (2018)

    Article  Google Scholar 

  10. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  11. Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., Varnier, C.: Pronostia: an experimental platform for bearings accelerated degradation tests. In: IEEE International Conference on Prognostics and Health Management, PHM’12. IEEE Catalog Number: CPF12PHM-CDR, pp. 1–8 (2012)

  12. Ahmadzadeh, F., Lundberg, J.: Remaining useful life estimation. Int. J. Syst. Assur. Eng. Manag. 5(4), 461–474 (2014)

    Article  Google Scholar 

  13. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques—part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)

    Article  Google Scholar 

  14. Luo, J., Bixby, A., Pattipati, K., Qiao, L., Kawamoto, M., Chigusa, S.: An interacting multiple model approach to model-based prognostics. In: SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), vol. 1, pp. 189–194. IEEE (2003)

  15. Li, Y., Kurfess, T., Liang, S.: Stochastic prognostics for rolling element bearings. Mech. Syst. Signal Process. 14(5), 747–762 (2000)

    Article  Google Scholar 

  16. Baillie, D., Mathew, J.: Nonlinear model-based fault diagnosis of bearings. NDT e Int. 5(30), 328 (1997)

    Google Scholar 

  17. Tobon-Mejia, D.A., Medjaher, K., Zerhouni, N., Tripot, G.: A data-driven failure prognostics method based on mixture of gaussians hidden markov models. IEEE Trans. Reliab. 61(2), 491–503 (2012)

    Article  Google Scholar 

  18. Cheng, F., Qu, L., Qiao, W., Hao, L.: Enhanced particle filtering for bearing remaining useful life prediction of wind turbine drivetrain gearboxes. IEEE Trans. Ind. Electron. 66(6), 4738–4748 (2018)

    Article  Google Scholar 

  19. Banjevic, D., Jardine, A.: Calculation of reliability function and remaining useful life for a markov failure time process. IMA J. Manag. Math. 17(2), 115–130 (2006)

    Article  MathSciNet  Google Scholar 

  20. Sankararaman, S., Goebel, K.: Uncertainty quantification in remaining useful life of aerospace components using state space models and inverse form. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1537 (2013)

  21. Zhang, J., Wang, S., Chen, L., Guo, G., Chen, R., Vanasse, A.: Time-dependent survival neural network for remaining useful life prediction. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 441–452. Springer (2019)

  22. Tian, Z.: An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. J. Intell. Manuf. 23(2), 227–237 (2012)

    Article  Google Scholar 

  23. Soualhi, A., Medjaher, K., Zerhouni, N.: Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression. IEEE Trans. Instrum. Meas. 64(1), 52–62 (2014)

    Article  Google Scholar 

  24. Zhu, M., Ye, K., Wang, Y., Xu, C.-Z.: A deep learning approach for network anomaly detection based on AMF-LSTM. In: IFIP International Conference on Network and Parallel Computing, pp. 137–141. Springer (2018)

  25. Zhu, M., Ye, K., Xu, C.-Z.: Network anomaly detection and identification based on deep learning methods. In: International Conference on Cloud Computing, pp. 219–234. Springer (2018)

  26. Lin, P., Ye, K., Xu, C.-Z.: Dynamic network anomaly detection system by using deep learning techniques. In: International Conference on Cloud Computing, pp. 161–176. Springer (2019)

  27. Ye, K., Liu, Y., Xu, G., Xu, C.-Z.: Fault injection and detection for artificial intelligence applications in container-based clouds. In: International Conference on Cloud Computing, pp. 112–127. Springer (2018)

  28. Pinheiro, H., Jain, P., Joos, G.: Series-parallel resonant converter in the self-sustained oscillating mode for unity power factor applications. In: Proceedings of APEC 97-Applied Power Electronics Conference, vol. 1, pp. 477–483. IEEE (1997)

  29. Bai, S., Kolter, J. Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling (2018). arXiv preprint arXiv:1803.01271

  30. Deng, S., Zhang, N., Zhang, W., Chen, J., Pan, J. Z., Chen, H.: Knowledge-driven stock trend prediction and explanation via temporal convolutional network. In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 678–685. ACM (2019)

  31. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814 (2010)

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (No. 2018YFB1004804), National Natural Science Foundation of China (No. 61702492), Shenzhen Discipline Construction Project for Urban Computing and Data Intelligence, and Shenzhen Basic Research Program (No. JCYJ20170818153016513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejiang Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Yao, Q., Ye, K. et al. Empirical Mode Decomposition and Temporal Convolutional Networks for Remaining Useful Life Estimation. Int J Parallel Prog 48, 61–79 (2020). https://doi.org/10.1007/s10766-019-00650-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-019-00650-1

Keywords

Navigation