Skip to main content
Log in

Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress

Physiologische und morphologische Reaktionen zweier Quinoa-Sorten (Chenopodium quinoa Willd.) auf Trockenstress

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the drought-related adaptation strategies of two quinoa (Chenopodium quinoa Willd.) cultivars grown under controlled conditions. After 34 days of growth, water was withheld until plants were severely wilted, then they were re-watered and left to recover. 20 days later the experiment was reproduced. We analyzed growth, biomass, stomatal density, leaf water status, chlorophyll and malonyldialdehyde (MDA) content. Results showed that under water stress growth, biomass, stomatal density and leaf water status were significantly affected. On the other hand, results showed that water stress in the initial period can significantly increase the tolerance to drought during later phases. The data showed that quinoa drought tolerance may result from its capacity to maintain cell health status. Our findings provide new tracks into the mechanisms of drought tolerance in quinoa plants.

Zusammenfassung

Das Ziel dieser Studie war es, die durch Trockenheit bedingten Anpassungsstrategien zweier Quinoa-Sorten (Chenopodium quinoa Willd.) zu untersuchen, die unter kontrollierten Bedingungen angebaut werden. Nach 34 Wachstumstagen wurde Wasser zurückgehalten, bis die Pflanzen stark verwelkt waren, dann wurden sie wieder bewässert und konnten sich erholen. 20 Tage später wurde das Experiment reproduziert. Wir analysierten Wachstum, Biomasse, Stomatadichte, Blattwasserstatus, Chlorophyll- und Malonyldialdehydgehalt (MDA). Die Ergebnisse zeigten, dass unter Wasserstress das Wachstum, die Biomasse, die Stomatadichte und der Blattwasserstatus signifikant beeinflusst wurden. Auf der anderen Seite zeigten die Ergebnisse, dass Wasserstress in der Anfangsphase die Toleranz gegenüber Trockenheit in späteren Phasen signifikant erhöhen kann. Die Daten zeigten zudem, dass die Trockentoleranz von Quinoa aus der Fähigkeit resultieren kann, den Gesundheitszustand der Zellen zu erhalten. Unsere Ergebnisse liefern neue Erkenntnisse über die Mechanismen der Trockentoleranz in Quinoa-Pflanzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achten WMJ, Maes WH, Reubens B, Mathij SE, Singh VP, Verchot L, Muys B (2010) Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenergy 34:667–676

    Article  Google Scholar 

  • Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen SE (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129

    Article  CAS  Google Scholar 

  • Aganchich B, Tahi H, Wahbi S, Modaffar C, Serraj R (2007) Growth, water relations and antioxidant defence mechanisms of olive (Olea europaea L.) subjected to Partial Root Drying (PRD) and Regulated Deficit Irrigation (RDI). Plant Biosyst 141:252–264

    Article  Google Scholar 

  • Aganchich B, Wahbi S, Loreto F, Centritto M (2009) Partial root zone drying: Regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. Tree Physiol 29:685–696

    Article  CAS  PubMed  Google Scholar 

  • Arnon D (1949) Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artemios MB, George K (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379

    Article  Google Scholar 

  • Ashraf A, Aranda X, Savé R, Felicidad H, Biel C (2013) Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse. Agric Water Manag 118:150–158

    Article  Google Scholar 

  • Benlhabib O (2005) Les cultures alternatives: Quinoa, amarante et épeautre. Transf Technol Agric 133:1–4

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited enviroments. Exp Agric 43:411–435

    Article  Google Scholar 

  • Ehlert C, Maurel C, Tardieu F, Simonneau T (2009) Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell Turgor and leaf elongation even without changing transpiration. Plant Physiol 150:1093–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fghire R (2014) Effet du déficit hydrique sur le comportement écophysiologique et agronomique du quinoa (Chenopodium quinoa). Université Cadi Ayyad, Marrekech (PhD Thesis)

    Google Scholar 

  • Fghire R, Anaya F, Oudou IA, Benlhabib O, Ragab R, Wahbi S (2015) Physiological and photosynthetic response of quinoa to drought stress. Chil J Agric 75:174–183

    Article  Google Scholar 

  • Fghire R, Oudou IA, Anaya F, Benlhabib O, Jacobsen SE, Wahbi S (2013) Protective Antioxidant enzyme activities are affected by drought in quinoa (Chenopodium quinoa Willd.). J Biol Agric Healthc 3:62–68

    Google Scholar 

  • Fu GF, Song J, Li YR, Yue MK, Xiong J, Tao LX (2010) Alterations of panicle antioxidant metabolism and carbohydrate content and pistil water potential involved in spikelet sterility in rice under water-deficit stress. Rice Sci 17:303–310

    Article  Google Scholar 

  • Ge T, Sui F, Bai L, Lu Y, Zhou G (2006) Effects of water stress on the protective enzyme activities and lipid Peroxidation in roots and leaves of summer maize. Agric Sci China 5:291–298

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007. Synthesis report. IPCC, Geneva https://doi.org/10.1017/CBO9780511546013 (Contribution of Working Groups I, II & III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change)

    Book  Google Scholar 

  • Jacobsen SE (1997) Adaptation of quinoa (Chenopodium quinoa) to northern European agriculture. Studies on developmental pattern. Euphytica 96:41–48

    Article  Google Scholar 

  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic 122:281–287

    Article  CAS  Google Scholar 

  • Jacobsen SE, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475

    Article  Google Scholar 

  • Jensen CR, Jacobsen SE, Andersen MN, Nunez N, Andersen SD, Rasmussen L, Mogensen VO (2000) Leaf gaSExchange and water relation characteristics of field quinoa ( Chenopodium quinoa Willd.) during soil drying. Eur J Agron 13:11–25

    Article  Google Scholar 

  • Khaleghi E, Arzani K, Moallemi N, Barzegar M (2012) Evalution of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Acad Sci Eng Technol 68:1154–1157

    Google Scholar 

  • Liu F, Stu H (2002) Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. Eur J Agron 16:137–150

    Article  Google Scholar 

  • Miranda-apodaca J, Yoldi-achalandabaso A, Aguirresarobe A (2018) Similarities and differences between the responses to osmotic and ionic stress in quinoa from a water use perspective. Agric Water Manag 203:344–352

    Article  Google Scholar 

  • Mujica A, Jacobsen SE, Izquierdo J, Marathée JP (2001) Quinua (Chenopodium quinoa Willd.): Ancestral cultivo andino, alimento del presente y futuro. In: Izquierdo Fernández JI et al (ed) Cultivos Andinos. FAO, Santiago (CD-ROM)

    Google Scholar 

  • Ogaya R, Llorens L, Peñuelas J (2011) Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime. Acta Oecologica 37:381–385

    Article  Google Scholar 

  • Razzaghi F, Jacobsen SE, Jensen CR, Andersen MN (2015) Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought—mechanisms of tolerance. Funct Plant Biol 42:136–148

    Article  CAS  Google Scholar 

  • Riccardi M, Mele G, Pulvento C, Lavini A, Andria R, Jacobsen SE (2014) Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosyn Res 120:263–272

    Article  CAS  PubMed  Google Scholar 

  • Ruiz KB, Biondi S, Martínez EA, Orsini F, Antognoni F, Jacobsen SE (2016) Quinoa—a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosyst 150:357–371

    Article  Google Scholar 

  • Sapeta H, Miguel C, Lourenço T, Marocod J, Lindee P, Oliveira M (2013) Drought stress response in Jatropha curcas: Growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Shabala L, Mackay A, Tian Y, Jacobsen SE, Zhou DW, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 146:26–38

    Article  CAS  Google Scholar 

  • Steele MR, Gitelson AA, Rundquist DC (2008) A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron J 100:779–782

    Article  CAS  Google Scholar 

  • Sun Y, Liu F, Bendevis M, Shabala S, Jacobsen SE (2014) Sensitivity of two Quinoa ( Chenopodium quinoa Willd.) varieties to progressive drought stress. J Agron Crop Sci 200:12–23

    Article  CAS  Google Scholar 

  • Tahi H, Wahbi S, Wakrim R, Aganchich B, Serraj R, Centritto M (2007) Water relations, photosynthesis, growth and water-use efficiency in tomato plants subjected to partial rootzone drying and regulated deficit irrigation. Plant Biosyst 141:265–274

    Article  Google Scholar 

  • Turner NC, Begg JE (1981) Plant-water relations and adaptation to stress. Plant Soil 58:97–131

    Article  Google Scholar 

  • Wahbi S, Wakrim R, Aganchich B, Tahi H, Serraj R (2005) Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate I. Physiological and agronomic responses. Agric Ecosyst Environ 106:289–301

    Article  Google Scholar 

  • Yang L, Han M, Zhou G, Li J (2007) The changes in water-use efficiency and stoma density of Leymus chinensis along northeast China transect. Acta Ecol Sinica 27:16–24

    Article  Google Scholar 

  • Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67:87–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oudou Issa Ali.

Ethics declarations

Conflict of interest

O. Issa Ali, R. Fghire, F. Anaya, O. Benlhabib and S. Wahbi declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa Ali, O., Fghire, R., Anaya, F. et al. Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress. Gesunde Pflanzen 71, 123–133 (2019). https://doi.org/10.1007/s10343-019-00460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00460-y

Keywords

Schlüsselwörter

Navigation