Skip to main content
Log in

Investigation of the effects of various parameters on the natural convection of nanofluids in various cavities exposed to magnetic fields: a comprehensive review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a comprehensive review has been carried out on the natural convective heat transfer inside various cavities containing nanofluid affected by the magnetic field (M.F). First, an introduction has been presented on the nanofluids and their applications, and then the magnetic nanofluids and the numerical studies on them have been finally evaluated. Nanofluid numerical studies under the effect of the M.F are modeled in two states: single-phase (S.P) and two-phase. A S.P model is assumed without any slipping between the fluid and nanoparticles. But in the two-phase model, the particle slip and motion of the particles are considered. In fact, in this study, the classification of papers with a common geometry and effective parameters on the nanofluid exposed to the free convection and M.F effects of has been studied. According to the results obtained by the researchers, it can be concluded that the rate of heat transfer decreases by enhancing the M.F and reducing the volumetric fraction of the nanoparticle and reducing the buoyancy force.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Esfe MH, Motahari K, Sanatizadeh E, Afrand M, Rostamian H, Ahangar MRH. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int Commun Heat Mass Transf. 2016;76:376–81.

    Google Scholar 

  2. Esfe MH, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg (OH) 2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–49.

    Google Scholar 

  3. Salari M, Malekshah EH, Esfe MH. Three dimensional simulation of natural convection and entropy generation in an air and MWCNT/water nanofluid filled cuboid as two immiscible fluids withemphasis on the nanofluid height ratio’s effects. J Mol Liquids. 2017;227:223–33.

    CAS  Google Scholar 

  4. Omrani AN, Esmaeilzadeh E, Jafari M, Behzadmehr A. Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam Relat Mater. 2019;93:96–104.

    CAS  Google Scholar 

  5. Esfe MH, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. J Mol Liquids. 2017;238:545–52.

    Google Scholar 

  6. Campos C, Vasco D, Angulo C, Burdiles PA, Cardemil J, Palza H. About the relevance of particle shape and graphene oxide on the behavior of direct absorption solar collectors using metal based nanofluids under different radiation intensities. Energy Convers Manag. 2019;181:247–57.

    CAS  Google Scholar 

  7. Esfe MH, Raki HR, Emami MRS, Afrand M. Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 2019;342:808–16.

    Google Scholar 

  8. Gheynani AR, Akbari OA, Zarringhalam M, Shabani GAS, Alnaqi AA, Goodarzi M, Toghraie D. Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. Int J Numer Methods Heat Fluid Flow. 2019

  9. Ouikhalfan M, Labihi A, Belaqziz M, Chehouani H, Benhamou B, Sarı A, Belfkira A. Stability and thermal conductivity enhancement of aqueous nanofluid based on surfactant-modified TiO2. J Dispers Sci Technol. 2019;1–9.

  10. Esfe MH, Hajmohammad H, Moradi R, Arani AAA. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method. Appl Therm Eng. 2017;112:1648–57.

    Google Scholar 

  11. Kasaeian A, Daneshazarian R, Rezaei R, Pourfayaz F, Kasaeian G. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. J Clean Prod. 2017;158:276–84.

    CAS  Google Scholar 

  12. Chen CH, Ding CY. Study on the thermal behavior and cooling performance of a nanofluid-cooled microchannel heat sink. Int J Therm Sci. 2011;50(3):378–84.

    CAS  Google Scholar 

  13. Sepyani K, Afrand M, Esfe MH. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liquids. 2017;236:198–204.

    CAS  Google Scholar 

  14. Esfe MH, Arani AAA, Niroumand AH, Yan WM, Karimipour A. Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int J Heat Mass Transf. 2015;89:783–91.

    Google Scholar 

  15. Lahlou S, Sehaqui R, Lahlou, N. Thermal transfer of nanofluids based on carbon nanotubes/glycerol and study of their rheological behavior. In MATEC Web of Conferences, Vol. 286. EDP Sciences; 2019. p. 08003.

  16. Sinha K, Kavlicoglu B, Liu Y, Gordaninejad F, Graeve OA. A comparative study of thermal behavior of iron and copper nanofluids. J Appl Phys. 2009;106(6):064307.

    Google Scholar 

  17. Esfe MH, Rejvani M, Karimpour R, Arani AAA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128(3):1359–71.

    CAS  Google Scholar 

  18. Zhu D, Li X, Wang N, Wang X, Gao J, Li H. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys. 2009;9(1):131–9.

    Google Scholar 

  19. Shah Z, Ullah A, Bonyah E, Ayaz M, Islam S, Khan I. Hall effect on Titania nanofluids thin film flow and radiative thermal behavior with different base fluids on an inclined rotating surface. AIP Adv. 2019;9(5):055113.

    Google Scholar 

  20. Esfe MH, Esfandeh S, Amiri MK, Afrand M. A novel applicable experimental study on the thermal behavior of SWCNTs (60%)-MgO (40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 2019;342:998–1007.

    CAS  Google Scholar 

  21. Esfe MH, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Google Scholar 

  22. Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Google Scholar 

  23. Esfe MH, Yan WM, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf. 2015;68:248–51.

    Google Scholar 

  24. Esfe MH, Arani AAA, Esfandeh S. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl Therm Eng. 2018;143:493–506.

    Google Scholar 

  25. Esfe MH, Arani AAA, Esfandeh S, Afrand M. Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy. Energy. 2019;170:228–38.

    Google Scholar 

  26. Esfe MH, Esfandeh S, Arani AAA. Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol. 2019;355:251–63.

    Google Scholar 

  27. Dogonchi A, Ismael MA, Chamkha AJ, Ganji DJJOTA. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019;135(6):3485–97.

    CAS  Google Scholar 

  28. Esfe MH, Esforjani SSM, Akbari M. Mixed convection flow and heat transfer in a lid-driven cavity subjected to nanofluid: effect of temperature, concentration and cavity inclination angles. Heat Transf Res. 2014;45(5):453–70.

    Google Scholar 

  29. Esfe MH, Niazi S, Sadegh S, Esforjani M, Akbari M. Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid. Heat Transf Res. 2014;45(4):309–38.

    Google Scholar 

  30. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  31. Vahedi SM, Pordanjani AH, Raisi A, Chamkha AJ. Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge. Eur Phys J Plus. 2019;134(3):124.

    Google Scholar 

  32. Pordanjani AH, Raisi A, Ghasemi B. Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect. Numer Heat Transf Part A Appl. 2019;76:1–18.

    Google Scholar 

  33. Oztop HF, Almeshaal MA, Kolsi L, Rashidi MM, Ali ME. Natural convection and irreversibility evaluation in a cubic cavity with partial opening in both top and bottom sides. Entropy. 2019;21(2):116.

    CAS  Google Scholar 

  34. Sheremet MA, Pop I, Nazar RJIJOMS. Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int J Mech Sci. 2015;100:312–21.

    Google Scholar 

  35. Alnaqi AA, Aghakhani S, Pordanjani AH, Bakhtiari R, Asadi A, Tran M-D. Effects of magnetic field on the convective heat transfer rate and entropy generation of a nanofluid in an inclined square cavity equipped with a conductor fin: considering the radiation effect. Int J Heat Mass Transf. 2019;133:256–67.

    CAS  Google Scholar 

  36. Al-Rashed AAAA, Ranjbarzadeh R, Aghakhani S, Soltanimehr M, Afrand M, Nguyen TK. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Phys A. 2019;521:724–36.

    CAS  Google Scholar 

  37. Ghadi AZ, Noroozi MJ, Esfe MH. Nanofluid implementation for heat transfer augmentation of magneto hydrodynamic flows in a lid-driven cavity using experimental-based correlations. Int J Appl Electromagnet Mech. 2013;42:589–602.

    Google Scholar 

  38. Pordanjani AH, Aghakhani S, Alnaqi AA, Afrand M. Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions. Int J Mech Sci. 2019;152:99–117.

    Google Scholar 

  39. Esfe MH, Ghadi AZ, Esforjani SSM, Akbari M. Combined convection in a lid-driven cavity with an inside obstacle subjected to Al2O3-water nanofuid: effect of solid volume fraction and nanofuid variable properties. Acta Phys Pol A. 2013;124(4):665–72.

    CAS  Google Scholar 

  40. Esfe MH, Arani AAA, Yan W-M, Aghaie A. Numerical study of mixed convection inside a Γ-shaped cavity with Mg (OH2)-EG nanofluids. Curr Nanosci. 2017;13(4):354–63.

    CAS  Google Scholar 

  41. Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47.

    CAS  Google Scholar 

  42. Fereidoon A, Saedodin S, Esfe MH, Noroozi MJ. Evaluation of mixed convection in inclined double lid-driven cavity filled with Al2o3/water nano-fluid. Eng Appl Comput Fluid Mech. 2013;7(1):55–65.

    Google Scholar 

  43. Mehrez Z, El Cafsi A, Belghith A, Le Quéré P. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. J Magn Magn Mater. 2015;374:214–24.

    CAS  Google Scholar 

  44. Selimefendigil F, Öztop HF. Analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation. Int J Mech Sci. 2016;118:113–24.

    Google Scholar 

  45. Mliki B, Abbassi MA, Omri A, Zeghmati B. Effects of nanoparticles Brownian motion in a linearly/sinusoidally heated cavity with MHD natural convection in the presence of uniform heat generation/absorption. Powder Technol. 2016;295:69–83.

    CAS  Google Scholar 

  46. Sheikholeslami M, Hayat T, Alsaedi A. Numerical simulation for forced convection flow of MHD CuO-H2O nanofluid inside a cavity by means of LBM. J Mol Liq. 2018;249:941–8.

    CAS  Google Scholar 

  47. Bárcena C, Sra AK, Gao J. Applications of magnetic nanoparticles in biomedicine. In: Liu JP, Fullerton E, Gutfleisch O, Sellmyer DJ, editors. Nanoscale magnetic materials and applications. Berlin: Springer; 2009. p. 591–626.

    Google Scholar 

  48. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2019;135:1–15.

    Google Scholar 

  49. Vahedi SM, Pordanjani AH, Wongwises S, Afrand M. On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al 2 O 3 nanofluid in presence of a magnetic field. J Therm Anal Calorim. 1–18.

  50. Hyeon TJCC. Chemical synthesis of magnetic nanoparticles. 2003;8:927–934.

  51. Ito A, Shinkai M, Honda H, Kobayashi TJJOB, and bioengineering, Medical application of functionalized magnetic nanoparticles. 2005;100(1):1–11.

  52. Kumar A, Subudhi SJH, Transfer M. Preparation, characteristics, convection and applications of magnetic nanofluids: a review. Heat Mass Transf. 2018;54:1–25.

    CAS  Google Scholar 

  53. Aghakhani S, Ghasemi B, Hajatzadeh Pordanjani A, Wongwises S, Afrand M. Effect of replacing nanofluid instead of water on heat transfer in a channel with extended surfaces under a magnetic field. Int J Numer Methods Heat Fluid Flow 2019.

  54. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;1–23.

  55. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises SJIJOH. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    CAS  Google Scholar 

  56. Sheikholeslami M, Rokni HBJIJOH. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  57. Sun C, Lee JS, Zhang MJADDR. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tartaj P, del Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJJJOPDAP. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R182.

    CAS  Google Scholar 

  59. Nkurikiyimfura I, Wang Y, Pan ZJR. Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev. 2013;21:548–61.

    CAS  Google Scholar 

  60. Haddad Z, Oztop HF, Abu-Nada E, Mataoui AJR. A review on natural convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2012;16(7):5363–78.

    CAS  Google Scholar 

  61. Kakaç S, Pramuanjaroenkij AJIJOH. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13–14):3187–96.

    Google Scholar 

  62. Wang X-Q, Mujumdar ASJIJOTS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Google Scholar 

  63. Wakif A, Boulahia Z, Ali F, Eid MR, Sehaqui RJIJOA. Numerical analysis of the unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids. Int J Appl Comput Math. 2018;4(3):81.

    Google Scholar 

  64. Pramuanjaroenkij A, Tongkratoke A, Kakaç SJJOEP. Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement. J Eng Phys Thermophys. 2018;91(1):104–14.

    CAS  Google Scholar 

  65. Ding Y, Wen DJPT. Particle migration in a flow of nanoparticle suspensions. Powder Technol. 2005;149(2–3):84–92.

    CAS  Google Scholar 

  66. Raisi A, Ghasemi BJHTR. The effect of magnetic field on counterflows of nanofluids in adjacent microchannels separated by a thin plate.

  67. Bazri S, Badruddin IA, Naghavi MS, Bahiraei MJRE. A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renew Energy. 2018;118:761–78.

    CAS  Google Scholar 

  68. Raj P, Subudhi SJR. A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev. 2018;84:54–74.

    CAS  Google Scholar 

  69. Prakash A, Satsangi S, Mittal S, Nigam B, Mahto P, Swain BP. Investigation on Al2O3 nanoparticles for nanofluid applications-a review. In: IOP conference series: materials science and engineering, 2018, vol. 377, no. 1, p. 012175: IOP Publishing.

  70. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M. A comprehensive review on rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations. Int J Heat Mass Transf. 2018;127:997–1012.

    CAS  Google Scholar 

  71. Esfe MH, Hajmohammad MH, Razi P, Ahangar MRH, Arani AAA. The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int Commun Heat Mass Transf. 2016;79:128–34.

    Google Scholar 

  72. Esfe MH, Hajmohammad H, Wongwises S. Pareto optimal design of thermal conductivity and viscosity of NDCo3O4 nanofluids by MOPSO and NSGA II using response surface methodology. Curr Nanosci. 2018;14:62–70.

    CAS  Google Scholar 

  73. Esfe MH, Saedodin S, Asadi A. An empirical investigation on the dynamic viscosity of Mg (OH) 2–ethylene glycol in different solid concentrations and proposing new correlation based on experimental data. Int J Nat Eng Sci. 2014;8(3):29–34.

    CAS  Google Scholar 

  74. Nadooshan AA, Esfe HM, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Phys E Low-dimensional Syst Nanostruct. 2017;92:47–54.

    Google Scholar 

  75. Sarafraz MM, Arya H, Saeedi M, Ahmadi D. Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: experimental assessment and correlation development. Appl Therm Eng. 2018;138:552–62.

    CAS  Google Scholar 

  76. Esfe HM, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119(3):1817–24.

    Google Scholar 

  77. Sarafraz MM, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liquids. 2018;263:382–9.

    CAS  Google Scholar 

  78. Esfe MH, Saedodin S, Mahian O, Wongwises S. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf. 2014;58:138–46.

    Google Scholar 

  79. Esfe MH, Firouzi M, Rostamian H, Afrand M. Prediction and optimization of thermophysical properties of stabilized Al2O3/antifreeze nanofluids using response surface methodology. J Mol Liquids. 2018;261:14–20.

    Google Scholar 

  80. Sarafraz M, Arya A, Nikkhah V, Hormozi FJC. Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem Biochem Eng Q. 2016;30(4):489–500.

    CAS  Google Scholar 

  81. Karimipour A, Ghasemi S, Darvanjooghi MHK, Abdollahi A. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int Commun Heat Mass Transf. 2018;92:90–9.

    CAS  Google Scholar 

  82. Esfe MH. The investigation of effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluids. Periodica Polytech Chem Eng. 2018;62(1):43–50.

    CAS  Google Scholar 

  83. Afrand M, Abedini E, Teimouri H. How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development. Phys E Low-Dimen Syst Nanostruct. 2017;87:273–80.

    CAS  Google Scholar 

  84. Einstein A. Eine neue bestimmung der moleküldimensionen. Ann Phys. 1906;324(2):289–306.

    Google Scholar 

  85. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    CAS  Google Scholar 

  86. Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Google Scholar 

  87. Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2019;142:364–72.

    CAS  Google Scholar 

  88. Graham AL. On the viscosity of suspensions of solid spheres. Appl Sci Res. 1981;37(3–4):275–86.

    CAS  Google Scholar 

  89. Simha R. The influence of Brownian movement on the viscosity of solutions. J Phys Chem. 1940;44(1):25–34.

    CAS  Google Scholar 

  90. Mooney M. A shearing disk plastometer for unvulcanized rubber. Ind Eng Chem Anal Ed. 1934;6(2):147–51.

    CAS  Google Scholar 

  91. Eilers VH. Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentfractionn. Kolloid-Zeitschrift. 1941;97(3):313–21.

    CAS  Google Scholar 

  92. Saitô N. Concentration dependence of the viscosity of high polymer solutions. I. J Phys Soc Jpn. 1950;5(1):4–8.

    Google Scholar 

  93. Frankel N, Acrivos A. On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci. 1967;22(6):847–53.

    Google Scholar 

  94. Sarafraz M, Tian Z, Tlili I, Kazi S, Goodarzi V. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. J Therm Anal Calorim. 1–11.

  95. Sarafraz M, Tlili I, Tian Z, Khan AR, Safaei MRJJOTA. Thermal analysis and thermo-hydraulic characteristics of zirconia–water nanofluid under a convective boiling regime. J Therm Anal Calorim. 1–10.

  96. Selvaraj V, Morri B, Nair LM, Krishnan HJJOTA. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J Therm Anal Calorim. 2019;1–10.

  97. Sarafraz MM, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with copper oxide-indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng. 2018;137:700–9.

    CAS  Google Scholar 

  98. Esfe MH, Behbahani PM, Arani AAA, Sarlak MR. Thermal conductivity enhancement of SiO2-MWCNT (85%:15%)-EG hybrid nanofluids. J Therm Anal Calorim. 2017;128(1):249–58.

    Google Scholar 

  99. Alirezaie A, Hajmohammad MH, Ahangar MRH, Esfe MH. Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Appl Therm Eng. 2018;128:373–80.

    CAS  Google Scholar 

  100. Pordanjani AH, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019;198:111886.

    Google Scholar 

  101. Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2017;131(2):1437–47.

    Google Scholar 

  102. Rashidi S, Eskandarian M, Mahian O, Poncet SJJOTA. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    CAS  Google Scholar 

  103. Rostamian H, Lotfollahi MN. A novel statistical approach for prediction of thermal conductivity of CO2 by Response surface methodology. Phys A Stat Mech Appl. 2019;527:121175.

    CAS  Google Scholar 

  104. Rostamian H, Lotfollahi MNJPPCE. A new correlation method for estimating thermal conductivity of carbon dioxide in liquid, vapor and supercritical phases 2017.

  105. Xian HW, Sidik NAC, Najafi GJJOTA. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135(2):981–1008.

    CAS  Google Scholar 

  106. Esfe MH, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017;125:673–85.

    Google Scholar 

  107. Yang L, Mao M, Huang J-N, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    CAS  Google Scholar 

  108. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon press; 1881.

    Google Scholar 

  109. Wasp EJ, Kenny JP, Gandhi RL. Solid–liquid flow: slurry pipeline transportation: [Pumps, valves, mechanical equipment, economics]. Ser Bulk Mater Handl. 1977;1(4).

  110. Bruggeman VD. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys. 1935;416(7):636–64.

    Google Scholar 

  111. Hamilton RL, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    CAS  Google Scholar 

  112. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6(6):577–88.

    Google Scholar 

  113. Koo J, Kleinstreuer C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transf. 2005;32(9):1111–8.

    CAS  Google Scholar 

  114. Avsec J, Oblak M. The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. Int J Heat Mass Transf. 2007;50(21–22):4331–41.

    CAS  Google Scholar 

  115. Jang SP, Choi SU. Effects of various parameters on nanofluid thermal conductivity. J Heat Transf. 2007;129(5):617–23.

    CAS  Google Scholar 

  116. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    CAS  Google Scholar 

  117. Timofeeva EV, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76(6):061203.

    Google Scholar 

  118. Valipour P, Jafaryar M, Moradi R, Aski FSJCE. Two phase model for nanofluid heat transfer intensification in a rotating system under the effect of magnetic field. Chem Eng Process Process Intensif. 2018;123:47–57.

    CAS  Google Scholar 

  119. Izadi M, Sinaei S, Mehryan S, Oztop HF, Abu-Hamdeh NJIJOH. Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two phase model. Int J Heat Mass Transf. 2018;127:67–75.

    CAS  Google Scholar 

  120. Sheikholeslami M, Rokni HBJCJOP. Effect of melting heat transfer on nanofluid flow in existence of magnetic field considering Buongiorno Model. Chin J Phys. 2017;55(4):1115–26.

    CAS  Google Scholar 

  121. Rashad A, Chamkha AJ, Ismael MA, Salah T. MHD natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J Heat Transf. 2018;140:0725502.

    Google Scholar 

  122. Sheikholeslami M, Rokni HBJTEPJP. Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity. Eur Phys J Plus. 2017;132(5):238.

    Google Scholar 

  123. Selimefendigil F, Öztop HFJICIH. Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity. Int J Heat Mass Transf. 2018;95:182–96.

    CAS  Google Scholar 

  124. Dogonchi A, Ismael MA, Chamkha AJ, Ganji DJJOTA. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2018;135:1–13.

    Google Scholar 

  125. Sheikholeslami M, Shamlooei MJPLA. Magnetic source influence on nanofluid flow in porous medium considering shape factor effect. Phys Lett. 2017;381(36):3071–8.

    CAS  Google Scholar 

  126. Sheikholeslami MJJOML. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liquids. 2017;229:137–47.

    CAS  Google Scholar 

  127. Ma Y, Mohebbi R, Rashidi M, Yang Z, Sheremet MAJIJOH. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2019;130:123–34.

    CAS  Google Scholar 

  128. Izadi M, Mohebbi R, Chamkha A, Pop IJIJONMFH. Effects of cavity and heat source aspect fractions on natural convection of a nanofluid in a C-shaped cavity using Lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018;28(8):1930–55.

    Google Scholar 

  129. Rahimi A, Kasaeipoor A, Malekshah EH, Amiri AJPELDS. Natural convection analysis employing entropy generation and heatline visualization in a hollow L-shaped cavity filled with nanofluid using lattice Boltzmann method-experimental thermo-physical properties. Phys E Low-Dimensional Syst Nanostruct. 2018;97:82–97.

    CAS  Google Scholar 

  130. Abbassi MA, Orfi JJJOT. Effects of magnetohydrodynamics on natural convection and entropy generation with nanofluids. J Thermophys Heat Transf. 2018;32:1–13.

    Google Scholar 

  131. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang ZJJOTA. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2018;135:1–17.

    Google Scholar 

  132. Sheikholeslami M, Seyednezhad MJIJOH. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.

    CAS  Google Scholar 

  133. Li Z, Sheikholeslami M, Chamkha AJ, Raizah Z, Saleem SJCMIAM. Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Comput Methods Appl Mech Eng. 2018;338:618–33.

    Google Scholar 

  134. Yadollahi A, Khalesidoost A, Kasaeipoor A, Hatami M, Jing DJTEPJP. Physical investigation on silver-water nanofluid natural convection for an F-shaped cavity under the magnetic field effects. Eur Phys J Plus. 2017;132(8):372.

    Google Scholar 

  135. Ma Y, Mohebbi R, Rashidi MM, Yang ZJIJONMFH. Effect of hot obstacle position on natural convection heat transfer of MWCNTs-water nanofluid in U-shaped enclosure using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018;29:223–50.

    Google Scholar 

  136. Rahimi A, et al. Analysis of natural convection in nanofluid-filled H-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method. Phys E Low-Dimensional Syst Nanostruct. 2018;97:347–62.

    CAS  Google Scholar 

  137. Ma Y, Mohebbi R, Rashidi M, Yang ZJJOTTIOCE. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect fraction. J Taiwan Inst Chem Eng. 2018;93:263–76.

    Google Scholar 

  138. Selimefendigil F, Oztop HF, Chamkha AJJJOTA. Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall. J Therm Anal Calorim. 2019;135:1–18.

    Google Scholar 

  139. Dogonchi A, Selimefendigil F, Ganji DJIJONMFH. Magneto-hydrodynamic natural convection of CuO-water nanofluid in complex shaped enclosure considering various nanoparticle shapes. Int J Numer Methods Heat Fluid Flow. 2018;29:1663–79.

    Google Scholar 

  140. Sheikholeslami M, Shamlooei M, Moradi RJCE. Numerical simulation for heat transfer intensification of nanofluid in a porous curved enclosure considering shape effect of Fe3O4 nanoparticles. Chem Eng Process-Process Intensif. 2018;124:71–82.

    CAS  Google Scholar 

  141. Sheikholeslami M, Li Z, Shamlooei MJPLA. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett. 2018;382(24):1615–32.

    CAS  Google Scholar 

  142. Bondareva NS, Sheremet MA, Pop IJIJONMFH. Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid: Buongiorno’s mathematical model. J Taiwan Inst Chem Eng. 2015;25(8):1924–46.

    Google Scholar 

  143. Bondareva NS, Sheremet MA, Öztop HF, Abu-Hamdeh NJIJONMFH. Transient natural convection in a partially open trapezoidal cavity filled with a water-based nanofluid under the effects of Brownian diffusion and thermophoresis. Int J Numer Methods Heat Fluid Flow. 2018;28(3):606–23.

    Google Scholar 

  144. Sheikholeslami MJNC. Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl. 2018;30(4):1055–64.

    Google Scholar 

  145. Sheikholeslami M, Rokni HBJCMIAM. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng. 2017;317:419–30.

    Google Scholar 

  146. Sheikholeslami M, Gorji-Bandpay M, Ganji DJICIH. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int J Numer Methods Heat Fluid Flow. 2012;39(7):978–86.

    CAS  Google Scholar 

  147. Sheikholeslami M, Öztop HF, Abu-Hamdeh N, Li ZJIJONMFH. Nanoparticle transportation of CuO-H2O nanofluid in a porous semi annulus due to Lorentz forces. Int J Numer Methods Heat Fluid Flow. 2018;29:294–308.

    Google Scholar 

  148. Alsabery A, Sheremet M, Chamkha A, Hashim IJSR. MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model. Sci Rep. 2018;8(1):7410.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Alsabery AI, Tayebi T, Chamkha AJ, Hashim IJIJONMFH. Effects of two-phase nanofluid model on natural convection in a square cavity in the presence of an adiabatic inner block and magnetic field. Int J Numer Methods Heat Fluid Flow. 2018;28(7):1613–47.

    Google Scholar 

  150. Tao Z, Defu C, Yifei Z, Hongfei S, Duanyu CJHTE. Effects of magnetic field and inclination on natural convection in a cavity filled with nanofluids by a double multiple-relaxation-time thermal lattice Boltzmann method. no. just-accepted, pp. 1–40, 2018.

  151. Pordanjani AH, Jahanbakhshi A, Nadooshan AA, Afrand MJIJOH. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78.

    CAS  Google Scholar 

  152. Sheikholeslami M, Sadoughi MJIJOH. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14.

    CAS  Google Scholar 

  153. Sheikholeslami M, Abelman SJEC. Numerical study of the effect of magnetic field on Fe3O4–water ferrofluid convection with thermal radiation. Eng Comput. 2018;35(5):1855–72.

    Google Scholar 

  154. Selimefendigil F, Öztop HFJIJOH. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    CAS  Google Scholar 

  155. Selimefendigil F, Öztop HF. MHD natural convection and entropy generation in a nanofluid-filled cavity with a conductive partition. In: Dincer I, Colpan CO, Kizilkan O, editors. Exergetic, energetic and environmental dimensions. Amsterdam: Elsevier; 2018. p. 763–78.

    Google Scholar 

  156. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem KJJOM. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. 2018;452:193–204.

  157. Sheikholeslami M, Gorji-Bandpy MJPT. Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol. 2014;256:490–8.

    CAS  Google Scholar 

  158. Sheikholeslami M, Vajravelu KJAM. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Eng Comput. 2017;298:272–82.

    Google Scholar 

  159. Sheikholeslami M, Rokni HBJIJOH. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Numer Methods Heat Fluid Flow. 2017;114:517–26.

    CAS  Google Scholar 

  160. Sheikholeslami MJPBCM. Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection. Phys B: Condens Matter. 2017;516:55–71.

    CAS  Google Scholar 

  161. Jelodari I, Nikseresht AHJJOML. Effects of Lorentz force and induced electrical field on the thermal performance of a magnetic nanofluid-filled cubic cavity. J Mol Liquids. 2018;252:296–310.

    CAS  Google Scholar 

  162. Al-Rashed AA, et al. Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. J Mol Liquids. 2018;252:454–68.

    CAS  Google Scholar 

  163. Al-Rashed AA, et al. 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Phys E Low-Dimensional Syst Nanostruct. 2018;99:294–303.

    CAS  Google Scholar 

  164. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises SJJOTA. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2019;135:1–15.

    Google Scholar 

  165. Benos L, Sarris IJIJOH. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int J Heat Mass Transf. 2019;130:862–73.

    CAS  Google Scholar 

  166. Mahmoudi AJJOTTIOCE. A scale analysis for natural convection in a porous media in the presence of a magnetic field 2018.

  167. Sheremet MA, Pop IJIJOH. Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2014;79:137–45.

    Google Scholar 

  168. Sheremet MA, Pop I, Mahian OJIJOH. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.

    CAS  Google Scholar 

  169. Astanina MS, Riahi MK, Abu-Nada E, Sheremet MAJIJOH. Magnetohydrodynamic in partially heated square cavity with variable properties: discrepancy in experimental and theoretical conductivity correlations. Int J Heat Mass Transf. 2018;116:532–48.

    CAS  Google Scholar 

  170. Sajjadi H, Delouei AA, Atashafrooz M, Sheikholeslami MJIJOH. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Transf. 2018;126:489–503.

    CAS  Google Scholar 

  171. Sheremet MA, Pop I, Roşca NCJJOTTIOCE. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J Taiwan Inst Chem Eng. 2016;61:211–22.

    CAS  Google Scholar 

  172. Ashorynejad HR, Shahriari AJRIP. MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys. 2018;9:440–55.

    Google Scholar 

  173. Sheikholeslami M, Ganji DJM. Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Mater Des. 2017;120:382–93.

    CAS  Google Scholar 

  174. Shahriari A, Ashorynejad HR, Pop IJJOTA. Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. J Therm Anal Calorim. 2018;135:1–21.

    Google Scholar 

  175. Dogonchi A, Chamkha AJ, Ganji DJJOTA. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2018;135:1–13.

    Google Scholar 

  176. Shirvan KM, Ellahi R, Mamourian M, Moghiman MJIJOH. Effects of wavy surface characteristics on natural convection heat transfer in a cosine corrugated square cavity filled with nanofluid. Int J Heat Mass Transf. 2017;107:1110–8.

    Google Scholar 

  177. Mehryan S, Izadi M, Chamkha AJ, Sheremet MAJJOML. Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J Mol Liquids. 2018;263:510–25.

    CAS  Google Scholar 

  178. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani SJNC. MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Comput Appl. 2014;24(3–4):873–82.

    Google Scholar 

  179. Sheikholeslami M, Hayat T, Alsaedi AJIJOH. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    CAS  Google Scholar 

  180. Sheikholeslami M, Ganji DJJOML. Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source. J Mol Liquids. 2017;229:530–40.

    CAS  Google Scholar 

  181. Sheikholeslami M, Ganji DDJCPL. Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source. Chem Phys Lett. 2017;667:307–16.

    CAS  Google Scholar 

  182. Sheikholeslami M, Hayat T, Alsaedi AJIJOH. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf. 2017;106:745–55.

    CAS  Google Scholar 

  183. Sheikholeslami MJIJOHE. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42(31):19611–21.

    CAS  Google Scholar 

  184. Afrand M, Toghraie D, Karimipour A, Wongwises SJJOM. A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Mag Mag Mater. 2017;430:22–8.

    CAS  Google Scholar 

  185. Sheikholeslami M, Ellahi R, Fetecau CJMPIE. CuO–Water nanofluid magnetohydrodynamic natural convection inside a sinusoidal annulus in presence of melting heat transfer. 2017;2017.

  186. Hatami M, Zhou J, Geng J, Jing DJJOM. Variable magnetic field (VMF) effect on the heat transfer of a half-annulus cavity filled by Fe3O4-water nanofluid under constant heat flux. J Mag Mag Mater. 2018;451:173–82.

    CAS  Google Scholar 

  187. Dogonchi A, Sheremet M, Ganji D, Pop IJJOTA. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2018;135:1–14.

    Google Scholar 

  188. Sheikholeslami M, Jalili P, Ganji DJAEJ. Magnetic field effect on nanofluid flow between two circular cylinders using AGM. Alexandria Eng J. 2017;57:587.

    Google Scholar 

  189. Sheikholeslami MJPLA. Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett. 2017;381(5):494–503.

    CAS  Google Scholar 

  190. Ashorynejad HR, Mohamad AA, Sheikholeslami MJIJOTS. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int J Therm Sci. 2013;64:240–50.

    CAS  Google Scholar 

  191. Sheikholeslami M, Shehzad SJIJOH. CVFEM for influence of external magnetic source on Fe3O4-H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.

    CAS  Google Scholar 

  192. Sheikholeslami M, Rokni HBJJOTS. Magnetohydrodynamic CuO–Water nanofluid in a porous complex-shaped enclosure. J Therm Sci Eng Appl. 2017;9(4):041007.

    Google Scholar 

  193. Sheikholeslami M, Zeeshan AJCMIAM. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Google Scholar 

  194. Sheikholeslami M, Sadoughi MJIJOH. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    CAS  Google Scholar 

  195. Sheikholeslami M, Zeeshan AJIJONMFH. Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media. Int J Numer Methods Heat Fluid Flow. 2018;28(3):641–60.

    Google Scholar 

  196. Sheikholeslami M, Rokni HBJJOML. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J Mol Liquids. 2018;254:446–62.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Esfandeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Afrand, M. & Esfandeh, S. Investigation of the effects of various parameters on the natural convection of nanofluids in various cavities exposed to magnetic fields: a comprehensive review. J Therm Anal Calorim 140, 2055–2075 (2020). https://doi.org/10.1007/s10973-019-08939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08939-6

Keywords

Navigation