Skip to main content
Log in

Plant miRNA–lncRNA Interaction Prediction with the Ensemble of CNN and IndRNN

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Non-coding RNA (ncRNA) plays an important role in regulating biological activities of animals and plants, and the representative ones are microRNA (miRNA) and long non-coding RNA (lncRNA). Recent research has found that predicting the interaction between miRNA and lncRNA is the primary task for elucidating their functional mechanisms. Due to the small scale of data, a large amount of noise, and the limitations of human factors, the prediction accuracy and reliability of traditional feature-based classification methods are often affected. Besides, the structure of plant ncRNA is complex. This paper proposes an ensemble deep-learning model based on convolutional neural network (CNN) and independently recurrent neural network (IndRNN) for predicting the interaction between miRNA and lncRNA of plants, namely, CIRNN. The model uses CNN to explore the functional features of gene sequences automatically, leverages IndRNN to obtain the representation of sequence features, and learns the dependencies among sequences; thus, it overcomes the inaccuracy caused by human factors in traditional feature engineering. The experiment results show that the proposed model is superior to shallow machine-learning and existing deep-learning models when dealing with large-scale data, especially for the long sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Costa FF (2010) Non-coding RNAs: meet thy masters. BioEssays 32(7):599–608

    Article  CAS  Google Scholar 

  2. Heo JB, Lee YS, Sung S (2013) Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res 21(6–7):685–693

    Article  CAS  Google Scholar 

  3. Liu YH, Diao HY, Yao YL et al (2016) Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumor Biol 37(1):673–683

    Article  Google Scholar 

  4. Ma R, Wang C, Wang J et al (2016) miRNA–mRNA Interaction Network in Non-small Cell Lung Cancer. Interdiscip Sci Comput Life Sci 8(3):209–219

    Article  CAS  Google Scholar 

  5. Huang ZA, Huang YA, You ZH et al (2018) Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph. BMC Med Genomics 11(6):113

    Article  CAS  Google Scholar 

  6. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing miRNA-lncRNA interactions. Methods Mol Biol 1402:271–286

    Article  CAS  Google Scholar 

  7. Jalali S, Bhartiya D, Lalwani MK et al (2013) Systematic transcriptome wide analysis of lncRNA miRNA interactions. PLoS ONE 8(2):e53823

    Article  CAS  Google Scholar 

  8. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283

    Article  CAS  Google Scholar 

  9. Valiollahi E, Farsi M, Kakhki AM (2014) Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotechnol Rep 8(4):349–356

    Article  Google Scholar 

  10. Chen J, Peng H, Han G et al (2018) HOGMMNC: a higher order graph matching with multiple network constraints model for gene–drug regulatory modules identification. Bioinformatics 35(4):602–610

    Article  Google Scholar 

  11. Gu JX, Wang ZH, Kuen J (2018) Recent Advances in Convolutional Neural Networks. Pattern Recogn 77:354–377

    Article  Google Scholar 

  12. Li S, Li W, Cook C, et al (2018) Independently recurrent neural network (IndRNN): building a longer and deeper RNN. In: IEEE conference on computer vision and pattern recognition. https://arxiv.org/abs/1803.04831

  13. Yi X, Zhang Z, Ling Y et al (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43(D1):D982–D989

    Article  CAS  Google Scholar 

  14. Andreu PG, Antonio HP, Irantzu Anzar ML et al (2016) GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44(D1):D1161–D1166

    Article  Google Scholar 

  15. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(suppl):W155–W159

    Article  CAS  Google Scholar 

  16. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  Google Scholar 

  17. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  Google Scholar 

  18. Douzas G, Bacao F (2019) Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Inf Sci 501:118–135

    Article  Google Scholar 

  19. Li C, Bovik AC, Wu X (2011) Blind image quality assessment using a general regression neural network. IEEE Trans Neural Networks 22(5):793–799

    Article  Google Scholar 

  20. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 60(6):84–90

    Google Scholar 

  21. Wang L, Yang J, Liu H et al (2016) Research on a self-adaption algorithm of recurrent neural network based chinese language model. Fire Control Command Control 41(5):31–34

    Google Scholar 

  22. Alipanahi B, Delong A, Weirauch MT et al (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 33(8):831–838

    Article  CAS  Google Scholar 

  23. Jin KH, Mccann MT, Froustey E et al (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26(9):4509–4522

    Article  Google Scholar 

  24. Campos Victor, Sastre F, Yagues Maurici et al (2017) Distributed training strategies for a computer vision deep learning algorithm on a distributed GPU cluster. Procedia Comput Sci 108:315–324

    Article  Google Scholar 

  25. Shi H, Xu M, Li R (2018) Deep learning for household load forecasting-a novel pooling deep RNN. IEEE Trans Smart Grid 9(5):5271–5280

    Article  Google Scholar 

  26. Zhou C, You W, Ding X (2010) Genetic algorithm and its implementation of automatic generation of Chinese songci. J Softw 21(3):427–437

    Article  Google Scholar 

  27. Yarotsky D (2017) Error bounds for approximations with deep Relu networks. Neural Netw 94:103–114

    Article  Google Scholar 

  28. An FP (2018) Human action recognition algorithm based on adaptive initialization of deep learning model parameters and support vector machine. IEEE Access 6:59405–59421

    Article  Google Scholar 

  29. Manaswi, Kumar N (2018) Deep learning with applications using Python || understanding and working with Keras. https://link.springer.com/chapter/10.1007/978-1-4842-3516-4_2

    Chapter  Google Scholar 

  30. Liu T, Yin S (2017) An improved particle swarm optimization algorithm used for BP neural network and multimedia course-ware evaluation. Multimed Tools Appl 76(9):11961–11974

    Article  Google Scholar 

  31. Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126

    Article  Google Scholar 

  32. Hung H, Jou ZY, Huang SY (2017) Robust mislabel logistic regression without modeling mislabel probabilities. Biometrics 74(1):145–154

    Article  Google Scholar 

  33. Lu X, Wang P, Niyato D (2014) Wireless Networks with RF Energy Harvesting: a Contemporary Survey. IEEE Commun Surv Tutor 17(2):757–789

    Article  Google Scholar 

  34. Xu A, Chen J, Peng H et al (2019) Simultaneous interrogation of cancer omics to identify subtypes with significant clinical differences. Front Genet 10:236

    Article  CAS  Google Scholar 

  35. Lorenz R, Bernhart SH, Honer Christian, zu Siederdissen CH et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6(1):26

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61872055 and 31872116).This paper was recommended by CBC2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Meng, J., Luan, Y. et al. Plant miRNA–lncRNA Interaction Prediction with the Ensemble of CNN and IndRNN. Interdiscip Sci Comput Life Sci 12, 82–89 (2020). https://doi.org/10.1007/s12539-019-00351-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00351-w

Keywords

Navigation