Skip to main content
Log in

Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Inclusion of cloud processes is essential for precipitation prediction with a numerical weather prediction model. However, convective parameterization contains numerous parameters whose values are in large uncertainties. In particular, it is still not clear how the parameters of a sub-grid-scale convection scheme can be modified to improve high-resolution precipitation prediction. To address these issues, a micro-genetic (micro-GA) algorithm is coupled to the Kain-Fritsch (KF) convective parameterization scheme (CPS) in the WRF to improve the quantitative precipitation forecast (QPF). The optimization focuses on two parameters in the KF scheme: the convective time scale and the conversion rate. The optimizing process is controlled by the micro-GA using a QPF skill score as the fitness function. Two heavy rainfall events related to typhoons that made landfall over the south-east coastal region of China are selected, and for each case the parameter values are adjusted to achieve the best QPF skill. Significant improvements in QPF are evident with an increase in the average equitable threat score (ETS) by 5.8% for the first case, and by 18.4% for the second case. The results demonstrate that the micro-GAKF coupling system is effective in optimizing the parameter values, which affect the applicability of CPS in a high-resolution model, and therefore improves the rainfall prediction in both ETS and spatial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arakawa A (2004). The cumulus parameterization problem: Past, present, and future. J Clim, 17(13): 2493–2525

    Google Scholar 

  • Aybar-Ruiz A, Jiménez-Fernández S, Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Salvador-González P, Salcedo-Sanz S (2016). A novel grouping genetic algorithm–extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. Sol Energy, 132: 129–142

    Google Scholar 

  • Álvarez A, López C, Riera M, Hernández-García E, Tintoré J (2000). Forecasting the sst space-time variability of the Alboran Sea with genetic algorithms. Geophys Res Lett, 27(17): 2709–2712

    Google Scholar 

  • Bao X, Davidson N E, Yu H, Hankinson M C N, Sun Z, Rikus L J, Liu J, Yu Z, Wu D (2015). Diagnostics for an extreme rain event near Shanghai during the landfall of Typhoon Fitow (2013). MonWeather Rev, 143(9): 3377–3405

    Google Scholar 

  • Bauer P, Thorpe A, Brunet G (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567). 47–55

    Google Scholar 

  • Brill K F, Mesinger F (2009). Applying a general analytic method for assessing bias sensitivity to bias-adjusted threat and equitable threat scores. Weather Forecast, 24(6): 1748–1754

    Google Scholar 

  • Bullock O R Jr, Alapaty K, Herwehe J A, Kain J S (2015). A dynamically computed convective time scale for the Kain-Fritsch convective parameterization scheme. Mon Weather Rev, 143(6): 2105–2120

    Google Scholar 

  • Chen F, Dudhia J (2001). Coupling an advanced land surface-hydrology model with the penn state-ncar mm5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev, 129(4): 569–585

    Google Scholar 

  • Clark A J, Gallus W A Jr, Chen T C (2007). Comparison of the diurnal precipitation cycle in convection-resolving and non-convection resolving mesoscale models. MonWeather Rev, 135(10): 3456–3473

    Google Scholar 

  • Correia J Jr, Arritt R W, Anderson C J (2008). Idealized mesoscale convective system structure and propagation using convective parameterization. Mon Weather Rev, 136(7): 2422–2442

    Google Scholar 

  • Dai A (2006). Precipitation characteristics in eighteen coupled climate models. J Clim, 19(18): 4605–4630

    Google Scholar 

  • Davis C A, Bosart L F (2002). Numerical simulations of the genesis of Hurricane Diana (1984). Part II: sensitivity of track and intensity prediction. Mon Weather Rev, 130(5): 1100–1124

    Google Scholar 

  • Fritsch J M, Chappell C F (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci, 37(8): 1722–1733

    Google Scholar 

  • Haidar A, Verma B (2017). A genetic algorithm based feature selection approach for rainfall forecasting in sugarcane areas. Computational Intelligence. IEEE

    Google Scholar 

  • Hong S, Park S K, Yu X (2015). Scheme based optimization of land surface model using a micro-genetic algorithm: assessment of its performance and usability for regional applications. Sci Online Lett Atmos, 11: 129–133

    Google Scholar 

  • Hong S Y, Noh Y, Dudhia J (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 134(9): 2318–2341

    Google Scholar 

  • Iacono M J, Delamere J S, Mlawer E J, Shephard M W, Clough S A, Collins W D (2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res D Atmos, 113(D13): D13103

    Google Scholar 

  • Jiménez P A, Dudhia J, González-Rouco J F, Navarro J, Montávez J P, García-Bustamante E (2012). A revised scheme for the WRF surface layer formulation. Mon Weather Rev, 140(3): 898–918

    Google Scholar 

  • Jin Y Q, Wang Y (2001). A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness. Int J Remote Sens, 22(16): 3093–3099

    Google Scholar 

  • Kishtawal C M, Basu S, Patadia F, Thapliyal P K (2003). Forecasting summer rainfall over India using genetic algorithm. Geophys Res Lett, 30(23): 2203

    Google Scholar 

  • Kain J S, Fritsch J M (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 47(23): 2784–2802

    Google Scholar 

  • Kain J S (2004). The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43(1): 170–181

    Google Scholar 

  • Krishnakumar K (1990). Micro-genetic algorithms for stationary and non-stationary function optimization. In: Intelligent Control and Adaptive Systems, 1196: 289–296

    Google Scholar 

  • Lee Y H, Park S K, Chang D E (2006). Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Ann Geophys, 24(12): 3185–3189

    Google Scholar 

  • Li F, Song J, Li X (2018). A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of typhoon Haiyan (2013). Nat Hazards, 92(2): 647–671

    Google Scholar 

  • Li M, Ping F, Tang X, Yang S (2019). Effects of microphysical processes on the rapid intensification of Super Typhoon Meranti. Atmos Res, 219: 77–94

    Google Scholar 

  • Li X (2013). Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Sci China Earth Sci, 56(2): 270–281

    Google Scholar 

  • Li X, Pu Z (2009). Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. J Meteorol Soc Jpn, 87(3): 403–421

    Google Scholar 

  • Liang X Z, Xu M, Kunkel K E, Grell G A, Kain J S (2007). Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Clim, 20(20): 5201–5207

    Google Scholar 

  • Lin Y, Farley R D, Orville H D (1983). Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol, 22(6): 1065–1092

    Google Scholar 

  • Lou L, Li X (2016). Radiative effects on torrential rainfall during the landfall of Typhoon Fitow (2013). Adv Atmos Sci, 33(1): 101–109

    Google Scholar 

  • Neggers R A J, Siebesma A P, Lenderink G, Holtslag A A M (2004). An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon Weather Rev, 132(11): 2525–2538

    Google Scholar 

  • Oana L, Spataru A (2017). Use of genetic algorithms in numerical weather prediction. In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 2016: 456–461

    Google Scholar 

  • Qiao F, Liang X Z (2016). Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J Adv Model Earth Syst, 8(2): 764–785

    Google Scholar 

  • Sandeep C P R, Krishnamoorthy C, Balaji C (2018). Impact of cloud parameterization schemes on the simulation of Cyclone Vardah using the WRF model. Curr Sci, 115(6): 1143–1153

    Google Scholar 

  • Schaefer J T (1990). The critical success index as an indicator of warning skill. Weather Forecast, 5(4): 570–575

    Google Scholar 

  • Sims A P, Alapaty K, Raman S (2017). Sensitivities of summertime mesoscale circulations in the coastal Carolinas to modifications of the Kain-Kritsch cumulus parameterization. Mon Weather Rev, 145(11): 4381–4399

    Google Scholar 

  • Singh R, Singh C, Ojha S P, Kumar A S, Kishtawal C M, Kumar A S K (2016). Land surface temperature from INSAT-3D imager data: retrieval and assimilation in NWP model. J Geophys Res D Atmospheres, 121(12): 6909–6926

    Google Scholar 

  • Skamarock W C, Klemp J B (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys, 227(7): 3465–3485

    Google Scholar 

  • Skamarock W C, Klemp J B, Duda M G, Fowler L D, Park S H, Ringler T D (2012). A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon Weather Rev, 140(9): 3090–3105

    Google Scholar 

  • Sugimoto S, Takahashi H G (2016). Effect of spatial resolution and cumulus parameterization on simulated precipitation over South Asia. Sola, 12(Special Edition): 7–12

    Google Scholar 

  • Sun Y, Zhong Z, Lu W, Hu Y (2014). Why are tropical cyclone tracks over the western north pacific sensitive to the cumulus parameterization scheme in regional climate modeling—a case study for Megi (2010). Mon Weather Rev, 142(3): 1240–1249

    Google Scholar 

  • Szpiro G G (1997). Forecasting chaotic time series with genetic algorithms. Phys Rev E, 55(3): 2557–2568

    Google Scholar 

  • Thompson G, Rasmussen R M, Manning K (2004). Explicit forecasts of winter precipitation using an improve bulk microphysics scheme. Part I: description and sensitivity analysis. MonWeather Rev, 132(2): 519–542

    Google Scholar 

  • Wang W, Seaman N L (1997). A comparison study of convective parameterization schemes in a mesoscale model. Mon Weather Rev, 125(2): 252–278

    Google Scholar 

  • Wang C C (2014). On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: the example of Taiwan. Weather Forecast, 29(4): 788–798

    Google Scholar 

  • Xu H, Du B (2015). The impact of Typhoon Danas (2013) on the torrential rainfall associated with Typhoon Fitow (2013) in east China. Adv Meteorol, 2015: 1–11

    Google Scholar 

  • Xu H, Liu R, Zhai G, Li X (2016). Torrential rainfall responses of typhoon Fitow (2013) to radiative processes: a three-dimensional WRF modeling study. J Geophys Res D Atmospheres, 121(23): 14127–14136

    Google Scholar 

  • Xu H, Li X (2017). Torrential rainfall processes associated with a landfall of Typhoon Fitow (2013). a three-dimensional wrf modeling study. J Geophys Res D Atmospheres, 122(11): 6004–6024

    Google Scholar 

  • Yang MJ, Tung Q C (2003). Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J Meteorol Soc Jpn, 81(5): 1163–1183

    Google Scholar 

  • Yu X, Park S K, Lee Y H, Choi Y S (2013). Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization. Sci Online Lett Atmos, 9(0): 36–39

    Google Scholar 

  • Yu Z, Yu H, Chen P, Qian C, Yue C (2009). Verification of tropical cyclone related satellite precipitation estimates in mainland China. J Appl Meteorol Climatol, 48(11): 2227–2241

    Google Scholar 

  • Yu Z F, Chen Y D, Wu D, Chen G M, Bao X W, Uamg Q Z, Yu R L, Zhang L, Tang J, Xu M, Zeng Z J (2014). Overview of Severe Typhoon Fitow and its operational forecasts. Trop Cyclone Res Rev, 3: 22–34

    Google Scholar 

  • Zhang C, Wang Y (2018). Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model? Clim Dyn, 51(9–10): 3613–3633

    Google Scholar 

  • Zheng Y, Alapaty K, Herwehe J A, Del Genio A D, Niyogi D (2016). Improving high-resolution weather forecasts using the weather research and forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon Weather Rev, 144(3): 833–860

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Basic Research Program of China (Grant No. 2015CB452806). The computation was supported by the ECNU Multifunctional Platform for Innovation (001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Shu, J. & Yu, X. Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm. Front. Earth Sci. 13, 721–732 (2019). https://doi.org/10.1007/s11707-019-0798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-019-0798-0

Keywords

Navigation